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Abstract

The present work deals with the process of flow-induced noise generation in a
mixing layer. The term mixing layer describes a flow field with two different
velocities in the streamwise direction and serves as a model for the initial part
of a jet. Due to the inflection point in the streamwise-velocity profile, distur-
bances are strongly amplified by hydrodynamic instability, leading to a roll-up
of the mixing layer and the generation of Kelvin-Helmholtz vortices. Their
pairing is one of the dominant noise sources in a jet.

Direct numerical simulation of the noise-generating flow and the acoustic farfield
is difficult because of the different scales of hydrodynamic fluctuations and emit-
ted sound. This requires a highly accurate numerical method with appropriate
boundary conditions in order not to spoil the sensitive acoustic field. For this,
a new code for direct numerical simulation of the compressible Navier-Stokes
equations is presented. It is based on compact finite differences and a spectral
ansatz in spanwise direction. In combination with linear stability theory and
postprocessing this forms a comprehensive framework for the simulation of un-
steady compressible flows.

The fundamentals of flow-induced noise generation in a mixing layer with S-
shaped velocity profile are investigated by means of two- and three-dimensional
simulations with defined disturbances. The combination of vortex pairing and
notable amplitude of the respective subharmonic yields the dominant sound
emission in downstream direction. Since the growth of low-frequency distur-
bances is driven by subharmonic resonance, the strength of the acoustic source
can be influenced by phase shifts of the introduced disturbances. An additional
spanwise disturbance can prevent the resonance mechanism which results in
upstream directed sound. In contrast to tonal acoustic emissions due to two-
dimensional Kelvin-Helmholtz vortices, three-dimensional effects lead to broad
band noise.

A more realistic configuration for jet noise is achieved by including a splitter
plate, representing the nozzle end. Downstream of the plate, a combination
of wake and mixing layer develops. Due to the splitter plate, the flow is only
quasi deterministic. This indicates a feedback loop where upstream traveling
acoustic sources induce new instability waves at the trailing edge. Accord-
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ingly, higher amplitudes of non-introduced low-frequency disturbances can be
observed for a splitter plate with increased thickness. A serrated trailing edge
leads to a spanwise deformation of the Kelvin-Helmholtz vortices, followed
by longitudinal vortex tubes. These lead to a breakdown of the large coherent
structures. In the considered case, this reduces the noise emission substantially.

Finally, a turbulent mixing layer is considered where the fast-stream bound-
ary layer is already turbulent. This is done by prescribing unsteady data of
a previous simulation at the inflow. The turbulent mixing layer is made of
small-scale structures with the generation of first large-scale Kelvin-Helmholtz
vortices. Despite similar scales, their growth is due to the inflection point of the
mean velocity profile. The dominant sound is due to a downstream-traveling
acoustic source in the turbulent boundary layer. When reaching the trailing
edge, a pulse-like noise is emitted in the low-speed stream. Between the peri-
odic appearance of the source, the noise generation at the trailing edge is weak.
Thus the geometrical unsteadiness of the trailing edge itself does not contribute
substantially to the generated noise, here.



Kurzfassung

Die vorliegende Arbeit behandelt die strömungsinduzierte Schallerzeugung in
freien Scherschichten. Der Begriff Scherschicht bezeichnet ein Strömungsfeld
mit zwei ungleichen Geschwindigkeiten in Längsrichtung und dient als Modell
für den anfänglichen Bereich eines Freistrahls. Aufgrund des Wendepunktes im
Geschwindigkeitsprofil werden Störungen stark angefacht, was zu einem Auf-
rollen der Scherschicht und Auswerfen von Kelvin-Helmholtz-Wirbeln führt.
Deren Verschmelzung weiter stromab ist eine der dominanten Schallquellen in
einem Freistrahl.

Die Schwierigkeit bei der Direkten Numerischen Simulation von schallerzeugen-
der Strömung und akustischem Fernfeld liegt in den unterschiedlichen Skalen
von hydrodynamischen Schwankungen und abgestrahltem Lärm. Dies erfordert
ein hochgenaues numerisches Verfahren mit passenden Randbedingungen, um
das empfindliche akustische Feld nicht zu verfälschen. Hierzu wird ein neu-
es Verfahren zur Direkten Numerischen Simulation der kompressiblen Navier-
Stokes-Gleichungen, basierend auf kompakten Finiten Differenzen und einem
Spektralansatz in Spannweitenrichtung, vorgestellt. In Kombination mit Linea-
rer Stabilitätstheorie und Auswertung ergibt dies eine umfangreiche Simulati-
onsumgebung für instationäre kompressible Strömungen.

Die Grundlagen der strömungsinduzierten Schallentstehung in Scherschichten
mit einem S-förmigen Geschwindigkeitsprofil werden mittels zwei- und dreidi-
mensionalen Simulationen unter kontrollierter Störungseingabe untersucht. Die
Kombination von Wirbelverschmelzung und merklicher Amplitude der jewei-
ligen subharmonischen Störung verursacht die dominate Schallabstrahlung in
Stromabrichtung. Da das Wachstum von niederfrequenten Fluktuationen durch
subharmonische Resonanz bestimmt ist, kann die Stärke der akustischen Quel-
le durch die relativen Phasenlagen der Störungsanregung beeinflusst werden.
Eine zusätzliche spannweitige Störung kann den Resonanzmechanismus unter-
binden, was sich in der Generierung von stromaufgerichtetem Schall wider-
spiegelt. Im Gegensatz zur tonalen Schallabstrahlung von zweidimensioanlen
Kelvin-Helmholtz-Wirbeln führen dreidimensionale Effekte zu Breitbandlärm.

Eine realistischere Konfiguration zur Untersuchung von Strahllärm ergibt sich
durch das Einbeziehen des Düsenendes, welches durch eine endliche ebene
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Platte repräsentiert wird. Stromab der Trennplatte entwickelt sich eine Kom-
bination aus Scherschicht und Nachlauf. Aufgrund der Trennplatte ist das
Strömungsfeld nunmehr quasi deterministisch, was auf die Existenz einer Rück-
kopplung schließen lässt, bei der stromauf abgestrahlter Schall neue Instabi-
litätswellen an der Hinterkante erzeugt. Entsprechend ergeben sich bei einem
dickeren Düsenende höhere Amplituden für nicht eingebrachte niederfrequente
Störungen. Einkerbungen an der Hinterkante führen zu einer spannweitigen
Verformung der Kelvin-Helmholtz-Wirbel mit anschließenden Längswirbeln,
welche stromab zum Zusammenbruch der großen Strukturen führen. Im be-
trachteten Fall kann dadurch der abgestrahlte Lärm deutlich verringert werden.

Abschließend wird eine turbulente Scherschicht untersucht, bei der eine der bei-
den Grenzschichten entlang der Trennplatte bereits turbulent ist. Hierzu wer-
den instationäre Daten aus einer vorhergehenden Simulation am Einströmrand
vorgeschrieben. Die turbulente Scherschicht besteht aus kleinskaligen Struktu-
ren, wobei die Bildung von größeren Kelvin-Helmholtz-Wirbeln erkennbar ist.
Trotz ähnlicher Skalen ist deren Entstehen durch den Wendepunkt des mitt-
leren Geschwindigkeitsprofils verursacht. Die dominante Schallabstrahlung hat
ihre Ursache in einer akustischen Quelle in der turbulenten Grenzschicht, die
stromab läuft. Bei Erreichen der Hinterkante wird ein Schallpuls in den unteren
Bereich des Fernfeldes abgestrahlt. Zwischen dem periodischen Auftreten der
Quelle ist die Schallerzeugang am Plattenende gering, so dass im vorliegenden
Fall die geometrische Unstetigkeit der Hinterkante selbst nicht dominant zur
Schallerzeugung beiträgt.



Nomenclature

Latin Letters

a - g coefficients of finite differences
a speed of sound
A, B coefficent matrices for linear stability theory
APmod amplitude ratio after one period
c1 - c5 characteristic variables
c convection speed
cf friction coefficient = τw/(1/2 · ρ∞u2

∞)
cph phase speed cph = ωr/αr
cp, cv heat capacities at constant pressure, volume
d diffusion, damping rate

D1, D2 matrices for 1st and 2nd derivatives, respectively
e efficiency
E total energy
f frequency = ω/2π
F, G, H flux vectors in x- y- and z-direction, respectively
h index of frequencies
hTE thickness of trailing edge
H12 shape factor = δ1/δ2
i imaginary unit =

√
−1

J determinant of the Jacobian matrix
j index of grid point
k index of spanwise modes
K number of spanwise modes
k∗ non-dimensional wave number, normalized with step size

L̃ reference length [m]
Lp sound pressure level [dB]
l equidistant time level, iteration number
Ma Mach number
N number of grid-points or time steps



x Nomenclature

O order of approximation
p pressure
Pr Prandtl number
qx, qy, qz heat flux density in x-, y- and z-direction, respectively
q̂ eigenvector of compressible LST
Q solution vector with conservative variables
Re Reynolds number
SU speed-up of parallelization
t time
∆t time step
T temperature

T̃S Sutherland temperature = 110.4K
TF transfer function of filter

u velocity vector = [u, v, w]T

u, v, w velocity components in x-, y- and z-direction, respectively
u+ velocity normalized with wall friction velocity = u/uτ
uτ wall friction velocity for turbulent flows =

p
〈τw〉/ρ

x0 streamwise coordinate at the inflow
x, y, z streamwise, normal and spanwise coordinate
∆x, ∆y,∆z stepsizes in x-, y- and z-direction, respectively
y+ wall length scale for turbulent flows = (uτ · ρ/µ) · y

Greek Letters

α, β, γ wave numbers in streamwise, normal and
spanwise direction, respectively

δΩ vorticity thickness (mixing layer)
δ1 displacement thickness
δ2 momentum thickness
δ99 boundary layer thickness where u = 0.99 · u∞
ζ aribtrary direction in computational space
∆ζ arbitrary stepsize in computational space
ϑ heat conductivity
Θ phase
κ adiabatic index (heat-capacity ratio)
λ wavelength
Λ2 vortex criterion by Jeong & Hussain
µ dynamic viscosity
µB coefficient of secondary viscosity (volume viscosity)
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ξ, η computational space in x-y-plane
∆ξ, ∆η stepsizes in equidistant computational space
π circular constant ≈ 3.1415927
ρ density
σ ramping function
τxx, τyy, τzz normal stresses
τxy, τxz, τyz shear stresses
ϕ directivity angle of sound (relative to x-axis)
Φ any flow quantity
Ψ wave angle = atan(γ/α)
ω angular frequency = 2π · f
Ωx, Ωz streamwise and spanwise vorticity, respectively

Symbols

′ fluctuation Φ′ = Φ− Φ0
‡ filtered value

˜ dimensional quantity
ˆ quantity in Fourier space

time-averaged quantity
_ averaged along multiple directions
〈 〉 spanwise-averaged values
| | absolute value of a quantity
( )T transposed vector
(h, k) mode with frequency h·ω0 and spanwise wavenumber k·γ0

þ degree of derivation, e.g. þ= 2: second derivative

∇ nabla operator: ∇ =
h
∂
∂x
, ∂
∂y
, ∂
∂z

iT
arg{ } argument of a compelex number, ∈ [0, 2π[
EV ( ) an eigenvalue of a matrix

Subscripts

∞ freestream condition

+,− forward and backward biased FD, respectively

0 fundamental quantity, baseflow

I , II upper and lower stream, respectively

an analytically computed

bc boundary condition

lhs left-hand side coefficients
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max maximum value

mod modified wave number

num numerically computed

rms root mean square of fluctuations

r, i real and imaginary parts, respectively

w quantity at the wall

Abbreviations

BL boundary layer
c.c. complex conjugate
CFL Courant-Friedrichs-Lewy number
CPU central processing unit
dB decibel
DNS direct numerical simulation
EAS3 Ein-Ausgabe-System 3
EPNL effective perceived noise level
FD finite difference
FLOP/s floating point operations per second
HLRS High Performance Computing Center Stuttgart
IAG Institut für Aerodynamik und Gasdynamik
I/O Input/Output of files
LST linear stability theory
MPI message passing interface
RANS Reynolds-averaged Navier-Stokes equations
RK Runge-Kutta
SPL sound pressure level
TS Tollmien-Schlichting
TCP/IP Transmission Control Protocol/Internet Protocol



1 Introduction

1.1 Jet Noise

Noise reduction is of great interest for a variety of technical applications. This
is especially the case in the aeronautics branch. Most airports are located in
highly populated areas and thus, many people are exposed to aircraft noise
emission. High acoustic loads may cause stress to people affected permanently,
reduce the quality of life and even be the origin of illness. This is reflected
in increasing regulations: e.g. in Germany, the nightly emission is restricted
to 55 dB(A) in residential areas near commercial airports [18]. Additionally,
airport operators are urged to provide funding for acoustic insulation of apart-
ments. Since landing fees depend on the noise emission and because of the
passengers’ comfort, airlines and aircraft manufacturers are interested in noise
reduction, too. Beyond the civil market, also military aircraft are requested to
have a smaller acoustic signature to be less detectable.

Aircraft noise can be decomposed into two fundamental sources: one being
caused by the airframe itself, e.g. landing gears or flaps, and the other due to
the engine. Engine noise is generated by the fan, combustion, the turbine and
the exhaust of the primary and secondary stream. The latter is denoted as jet
noise. According to NASA [78], the engine noise is the major acoustic source of
a civil aircraft. During the approach of the aircraft, the main acoustic load is
due to the compressor (fan), generating high-frequency screech tones which are
directed towards the nose of the aircraft. Behind air frame noise, the acoustic
emissions of the jet is the third largest noise source of a landing commercial
aircraft. Jet noise is even more important during take-off where it is by far the
dominant acoustic source.

Compared to early jet planes, today’s commercial aircrafts are up to 20 dB
more quiet. As shown in figure 1.1 this recent reduction of jet noise has been
achieved mainly by an increased bypass ratio. However, technical limits like
the engine’s diameter prevent higher bypass ratios. Thus, the reduction of jet
noise is stuck at some 90 dB (EPNL) nowadays and new concepts for noise
reduction are required.
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Figure 1.1: Progress in noise reduction during lift-off for various transportation
aircrafts according to Michel [70]. The effective perceived noise level
(EPNL) is taken at the sideline (distance of 450m) and normalized
with respect to a constant thrust of 446 kN.

Figure 1.2: Mixing layers behind the jet engine of a commercial aircraft.

In the initial part of the jet, the generated sound is caused by the mixing layer
surrounding the potential core. The term mixing layer or free shear layer de-
scribes a flow field composed of two streams with unequal velocities. Their
locations behind a typical jet engine for commercial aircrafts are illustrated in
figure 1.2. Mixing layers occur between the primary and the bypass stream
as well as between the bypass stream and the freestream. For jets with large
diameters, the mixing layer is known to be the source of the most audible high-
frequency noise with frequencies in the range of 1 to 4 kHz. A further acoustic
source is located at the end of the potential core where the spatially growing
mixing layers merge. Compared to the mixing layer, its sound emission is of
lower frequencies.
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Since computational resources are limited and because of the complexity of the
problem, highly accurate numerical investigations require to use a simplified
configuration. One possibility is the simulation of low-Reynolds-number jets
as done by Avital et al. [3] or Freund [34]. Due to the small diameter of the
jet the end of the potential core is included. However, the Reynolds similarity
is not valid for large-diameter jets and thus, the transfer of the results to real
jet engines is questionable. Hence, the focus within this work is set on the
mixing layer behind the nozzle end, sketched in figure 1.3. This can be done by
prescribing an S-shaped velocity profile at the inflow [15, 25] or by including
the trailing edge of the nozzle [6]. The first is denoted as pure mixing layer,
here. The latter provides a more realistic configuration since it accounts for
the finite boundary-layer thicknesses which yield a combination of wake and
mixing layer behind the trailing edge. Furthermore, actuators for flow control
can be included in the investigation.

y

x

U

UII

I

δΩ

Figure 1.3: Simplified model of the initial part of a jet: mixing layer past a
splitter plate with unequal velocities uI and uII .

Flow Field

A laminar mixing layer can be viewed as steady only in its initial region. If
the splitter plate is not taken into account, a similarity solution exists, see
White [106]. This solution of the boundary-layer equations is called Blasius
mixing layer and its vorticity thickness δΩ grows with

√
x. According to

Rayleigh [82], the inflection point in the velocity profile leads to inviscid in-
stability and with large amplification rates, the mixing layer is highly unstable.
Michalke [68] investigated the stability of a hyperbolic-tangent velocity profile
using linear stability theory (LST). Maximum amplification is found for fre-
quency f0 ≈ 0.132 · umean/δΩ with umean being the arithmetic mean of both
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freestream velocities. Later he could show that two-dimensional waves are more
amplified than three-dimensional ones [69]. Monkewitz & Huerre [72] extended
the stability computations to Blasius mixing layers and found the maximum
amplification rate of a self-similar mixing layer to be roughly proportional to
the velocity ratio. The combination of wake and mixing layer was considered
by Zhuang & Dimotakis [110]. Their inviscid linear stability theory revealed
the existence of an additional wake mode due to the existence of two inflection
points.

The unsteady free shear layer is predominantly two-dimensional in its initial
stages. This is also found in experiments, e.g. by Miksad [71]. The mixing
layer rolls up to Kelvin-Helmholtz vortices with subsequent vortex pairing.
Typically, the three-dimensional development towards a turbulent flow sets in
with streamwise vortices which are bended around their spanwise counterparts.
In their experiments, Bernal & Roshko [13] found these longitudinal vortices to
be pairwise counter rotating. They interact with the spanwise vortices, leading
to a breakdown to small-scale structures. Hipp-Kalthoff [43] could show in his
incompressible simulations that secondary instability (translative instability)
plays a major role in the origin of three-dimensional structures. Once the
mixing layer is turbulent, its mean flow field grows linearly with respect to the
streamwise coordinate. The spreading rate is approximately proportional to
the velocity ratio, see Ho & Huerre [44]. With increasing compressibility, the
growth rate of the averaged mixing layer decreases as shown by Vreman et al.
[102]. The end of the jet’s potential core is dominated by small-scale turbulent
structures and enhanced mixing, illustrated by a Schlieren photograph in figure
1.4.

Figure 1.4: Schlieren picture of a low-Reynolds-number jet (hairdryer) with

Re ≈ 18000 , showing the end of the potential core.1

1Thanks to Birgit Lenz and Anne-Marie Schreyer for taking the photograph.
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One should keep in mind that the above transition mechanism strongly depends
on the disturbance spectrum. If the introduced disturbances are predominantly
oblique modes, it is possible to bypass the two-dimensional Kelvin-Helmholtz
mechanism and reach turbulence directly. Alternatively, the flow parameters
may inhibit large coherent structures. For mixing layers with a non-zero sweep
angle, oblique modes are most amplified and an early breakdown can be ob-
served, see e.g. Kamoun [48]. This is also the case in two-dimensional mixing
layers with large compressibility effects. Sandham & Reynolds [86] showed by
means of LST and temporal DNS that oblique waves grow more rapidly than
two-dimensional instabilities for high Mach numbers. The resulting Λ-vortices
are staggered in streamwise direction.

Acoustic Field

When sound is caused by the flow and not by mechanical vibrations of a struc-
ture, one speaks of aeroacoustics. Commonly, one distinguishes between the
unsteady flow field where the sound is generated and the acoustic farfield in
which the acoustic wave propagates. The acoustic field is coupled with the
generating flow field in frequency space. For example every time when two
vortices collide, an acoustic fluctuation is generated and thus, the frequency
of the emitted sound is the one of the vortex pairing. On the other hand,
the emitted sound may generate new instability waves in the presence of solid
surfaces, thus forming a feedback loop between flow field and acoustics.

A first connection between the flow field and the generated sound was devel-
oped by Lighthill [59, 60]. His analogy predicts quadrupole sources and the
main sound emission in downstream direction for the mixing layer. Although
acoustic sources are generated by downstream-convected disturbances, their lo-
cation is fixed with respect to the nozzle end as shown experimentally by Laufer
& Yen [57]. They found the sources to be associated with the saturation of
instability waves and the corresponding vortex positions. The sound caused by
large turbulent structures like Kelvin-Helmholtz vortices is known to propagate
mainly in downstream direction while the acoustic emission due to small scale
structures is less directive, see Tam & Auriault [97]. The effect of large struc-
tures in a mixing layer is confirmed by various numerical simulations [15, 25]
which showed good agreement with acoustic analogies. The simulation of a jet
with Re = 3600 by Freund [34] provided the main sound emission from the end
of the potential core. However, a direct relation between vortex pairing and
sound generation can not be established: the flow field of the noise-controlled
mixing layer by Wei & Freund [105] does not differ fundamentally from the
uncontrolled case with larger sound emission.
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In supersonic jets, the interaction of shock cells with the mixing layer acts as
an additional source of sound, see e.g. Schulze et al. [89]. Furthermore the
phase velocity of instability waves may become supersonic depending on the
temperature and the Mach number of the jet. The resulting instability waves
show a linear phase distribution in normal direction [91]. Hence, these waves
travel not only in streamwise but also in normal direction and the instability
itself is an acoustic wave. For details on supersonic jet noise, the reader is
referred to the review by Tam [96].

1.2 Characterization of Sound

Sound is one of the characteristic waves in compressible flows, traveling with
the vector sum of the local flow velocity and the speed of sound. Since acoustic
waves are usually of small amplitude with respect to the ambient flow field,
sound is a linear wave. It can be described by frequency f = ω/(2π) and
amplitude. Due to the wide range of acoustic fluctuations along several orders
of magnitude, the sound pressure level (SPL) is given in logarithmic scale:

Lp = 20 · log10

„
p̃′rms
p̃ref

«
, (1.1)

where the subscript rms denotes the root-mean-square. The reference pressure
is p̃ref = 2·10−5Pa, being the threshold of hearing at a frequency of f = 1 kHz.
According to equation (1.1), an increase of sound pressure by a factor of two
corresponds to +6 dB. The sound pressure level scales inversely with the
distance to an acoustic point source. Exemplary noise sources with their typical
SPL values are listed in table 1.1.

source p̃′rms [Pa] SPL [dB]

jet engine at 30m 630 150
gun shot at 1m 200 140
threshold of pain 100 133
jack hammer at 1m 2 100
traffic noise 2 · 10−1 80
normal talking 2 · 10−2 60
library 2 · 10−3 40
auditory threshold at 1 kHz 2 · 10−5 0

Table 1.1: Sound pressure levels in air and rms-values of the pressure fluctua-
tion for various acoustic sources.
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Beyond the physical quantification of sound, various psycho-acoustic models
exist to obtain a better agreement with the sensitivity of the human ear. The
so-called A-weighted filter is used especially in the field of technical acoustics
and for regulations. It is denoted by dB(A) and emphasizes frequencies be-
tween 3 and 6 kHz. For example sound with a frequency of 95 Hz is reduced by
−20 while the one with f = 3 kHz increases by +1.27 in the dB(A)-scale. The
effect of aircraft noise is often characterized by the effective perceived noise
level (EPNL) which is used by the Federal Aviation Administration [31] and
includes the duration of the emitted sound as well. As investigations are done
in non-dimensional quantities, pressure fluctuations are given simply in loga-
rithmic scales, within this work.

1.3 Computational Aeroacoustics

Compared to other disciplines in the range of computational fluid dynamics,
aeroacoustic simulations are a relatively new field, facing several difficulties.
The main problem are the different scales of the hydrodynamic2 fluctuations
and the emitted sound, forming a multiscale problem sketched in figure 1.5.
The actual flow field, e.g. a mixing or a boundary layer, is dominated by high
frequencies with short wave lengths. For turbulent flows, large fluctuations
occur and the size of the structures ranges down to the Kolmogorov scale. On
the other hand, the emitted sound has relatively small amplitudes. Up to mod-
erate Mach numbers, the propagation speed of acoustic waves is significantly
larger than the flow speed. Furthermore, larger scales of the flow like Kelvin-
Helmholtz vortices in a mixing layer are known to be the dominant acoustic
sources. Since acoustic emissions are triggered by the frequencies of the flow,
the wavelengths of the sound are large with respect to the hydrodynamic fluc-
tuations.

Two principal methods exist to deal with aeroacoustic problems: direct acoustic
simulations, where the flow field and the generated sound are obtained by one
single simulation, and hybrid computations, where the acoustic field is derived
by sources taken from a previous simulation of the flow field. A time-accurate
coupling of flow and acoustic solver as given in appendix D and [4] may be
classified somewhere between both methods.

2The term hydrodynamic denotes the actual flow field in contrary to the acoustic field. It
does not imply incompressible flow, here.
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Figure 1.5: Intensity and wavelength of hydrodynamic fluctuations (e.g. tur-
bulence) and the emitted sound.

Hybrid Simulation

In the hybrid approach, the flow field is simulated separately from the acoustic
field. Depending on the requested accuracy and the Reynolds number, this
can be based on direct numerical simulations (DNS), large-eddy simulations
(LES) or unsteady Reynolds-averaged Navier-Stokes equations (RANS). Since
sound is not yet considered in this step, the simulation may be compressible
or incompressible. In a second step, the unsteady data of the flow field is
used to compute the acoustic far field based on acoustic theories. The one
developed first is the acoustic analogy by Lighthill [59]. He transformed the
compressible Navier-Stokes equations into a linear wave equation. Non-linear
terms and viscous effects are represented by a source term which is taken from
the unsteady flow field computed before. Solid surfaces were included in the
acoustic analogy by Ffowks-Williams & Hawkings [33]. Lilley [61] derived an
extension of Lighthill’s analogy which accounts for sound propagation in a non-
uniform mean flow. Yet the acoustic field in a sheared baseflow can be subject
to hydrodynamic instabilities as well. These are avoided by the acoustic per-
turbation equations derived by Ewert & Schröder [29] which were shown to
be hydrodynamically stable. When less accurate solutions of the flow field are
used, the acoustic sources due to the missing fine scales can be modelled by
semi-empirical theories like the one of Tam & Auriault [97].

With the computation of the sound being some kind of postprocessing, flow and
acoustic simulations are completely decoupled. The hybrid approach resolves
some major difficulties of the multiscale problem and hence may be applied to
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higher Reynolds numbers. Yet numerical approximations of the source terms
must be done thoroughly since small errors may affect the acoustic field severely,
see e.g. Avital et al. [3]. Up to now it is difficult to separate the source terms
from linear acoustic perturbations in spreading shear flows. Thus, Wang et
al. [103] classify acoustic analogies as modeling which should be applied with
caution.

Direct Acoustic Simulation

Commonly, direct acoustic simulations are based on direct numerical simula-
tion which resolves all relevant scales, or large-eddy simulation where dissipa-
tive scales are described by a sub-grid-scale model. In principle this may be
done also by means of unsteady RANS. However, noise due to turbulence is not
included and its dissipative behavior may handicap an adequate wave propaga-
tion. Examples of successful simulations are given by Colonius et al. [25] and
Freund [34] for DNS and by Bogey et al. [15] and Keiderling & Kleiser [49] for
LES. Since modeling is avoided, direct computation based on DNS seems to
be the most promising method to study the mechanisms of sound generation
and for the development of flow-control techniques. Unlike acoustic analogies,
possible feedback of acoustics on the noise-generating flow field as sketched in
figure 1.5 is included in this approach.

Direct aeroacoustic simulations have high demands on the numerical scheme.
In order to represent the mechanisms of sound generation correctly, a well-
resolved mesh is required. Since the relevant portion of the acoustic farfield
must be included as well, non-uniform grids are necessary to perform efficient
computations. To ensure that the discretization itself does not act as a source
of sound, a highly-accurate numerical scheme is compulsory. This is especially
the case for low Mach-number flows where the magnitude of the generated
sound is very small, e.g. see Wang et al. [103].

Success or failure of DNS with direct sound computation is directly related
to the choice of boundary conditions. At the freestream boundaries, outgoing
acoustic waves must be allowed to leave the computational domain. Due to
their small amplitudes, linearized boundary conditions can be employed, here.
Usually this is some characteristic boundary condition as described by Thomp-
son [98] or Giles [36] where the Euler equations are linearized about a given
baseflow. Based on an eigenvalue analysis, incoming disturbances are set to
zero and outgoing waves are computed from the interior flow field. By combin-
ing them with a small damping zone, reflections due to oblique waves can be
reduced significantly.
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The most crucial part is the outflow boundary where reflections due to high-
amplitude fluctuations of the flow must be prevented. In incompressible flows,
ramping the vorticity vector to a reference condition was shown to work prop-
erly by Kloker & Konzelmann [53]. However, this can not be applied to com-
pressible flow quantities in direct acoustic simulations since the continuity equa-
tion is not satisfied, hence generating large acoustic reflections. Colonius et al.
[24] proposed a combination of grid stretching and spatial filtering. Distur-
bances are less resolved as they propagate through the sponge region and are
successively removed by the filter. Since the complete set of equations is solved
in the damping zone, the continuity equation is not violated and hence acoustic
reflections are sufficiently small. In the zonal approach of Sandberg & Sandham
[85] incoming characteristics are smoothly ramped to zero inside a buffer zone.
A further method is the perfectly matched layer (PML) which was developed by
Berenger [11] for electromagnetic waves and extended to fluid dynamics by Hu
[45]. The PML technique reduces reflections by adding an additional advection
velocity and damping inside the layer. A characterization of various boundary
conditions for aeroacoustic simulations has been summarized by Colonius [23].

1.4 Noise Reduction Technology

Currently, different approaches towards quiet aircraft are considered. One pos-
sibility is to optimize the flight path such that the acoustic burden near airports
is reduced. This may yield a reduction of 1 to 3 dB [74]. Another approach is
the modification of the complete configuration of an aircraft. The blended wing
concept is a flying wing with its engines on top. With this design, the noise
emission towards the ground is shielded, e.g. Hileman et al. [42]. However,
these concepts do not tackle the origin of sound generation.

Probably more promising is the application of flow control where flow structures
in the mixing layer are modified in order to decrease their acoustic emissions.
A reasonable approach is to alter the geometry of the nozzle end. The Chevron
nozzle consists of serrations at the trailing edge and is known to affect the noise
generation positively. As shown in figure 1.6, this is already applied to com-
mercial aircraft. The effect is often explained by enhanced mixing but this is
rather a description than an explanation. Thus, the physical mechanisms of
non-uniform nozzle ends are only partly understood.

The experimental study of various chevron nozzles by Callender et al. [20]
reveals a noise reduction of 3 − 6 dB for the lower frequencies and a slightly
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increased generation of high-frequency sound. With the improvement strongly
depending on the velocity difference of the mixing layer, they state that chevron
nozzles should be operated near the design point. Bridges & Brown [17] inves-
tigated a hot Ma = 0.9 jet with various nozzle shapes. The number of chevrons
was a dominant parameter while their length appeared to be less important.
The decreased generation of low-frequency noise is also observed in RANS sim-
ulations by Engblom et al. [28]. Birch et al. [14] explain this by a reduction of
turbulence production due to an increased thickness of the mixing layer. Yet
this is contrary to the stronger generation of high-frequency noise. Gudmunds-
son & Colonius [38] applied linear stability theory to the time-averaged chevron
flow field taken from [17]. Compared to a straight trailing edge, spatial ampli-
fication rates are reduced and their maxima are shifted to lower frequencies.
Kit et al. [50] investigated the mixing layer past a trailing edge with triangular
chevrons experimentally. They found streamwise vortices and a spanwise de-
formation of the Kelvin-Helmhotz vortices. Similar results were obtained in the
DNS by Babucke et al. [7, 8], leading to an early breakdown of the spanwise
vortices and a notable reduction of low-frequency noise. A slit trailing edge can
reduce airfoil trailing-edge noise as shown by Herr [41]. In her experimental
study, generated sound was decreased furthermore by using a flexible material
which might be an option for jet-noise reduction as well.

Figure 1.6: Chevron nozzle on a Boeing 787’s jet engine.3

A further approach is fluid injection in the mixing layer of a jet. Arakeri et al.
[2] studied the effect of microjets on a Mach 0.9 jet by means of particle image

3Image by M.J. Handel from http://en.wikipedia.org/wiki/Image:Boeing 787 engine chevrons.jpg.

http://en.wikipedia.org/wiki/Image:Boeing_787_engine_chevrons.jpg
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velocimetry. Its flow field shows a reduced peak vorticity and the noise field
was reduced by 2 dB. A similar reduction is found by Harrison et al. [39] for
optimized angles of injection and in the LES by Gröschel et al. [37].

Beyond steady modifications of the flow, active actuation may be used to af-
fect the sound generation of a jet’s mixing layer. Due to the complexity of
the flow field, the shape of a proper actuation is an open question. A method
to deal with the large number of unknown is based on adjoint analysis. The
adjoint Navier-Stokes equations are computed backward in time and provide
the sensitivity of the flow to disturbances. They are linearized about a given
solution of the Navier-Stokes equations at the respective time instances. Such
sensitivity analyses have been performed by Cervino et al. [22] for a low-
Reynolds-number jet and by Spagnoli & Airiau [93] for a compressible mixing
layer. The backward-in-time integration leads to a broadening of the adjoint
spectrum at the inflow. Hence, it is possible to control high-frequency noise
with low-frequency actuation.

The adjoint solution directly provides the gradient of the acoustic emission al-
lowing an optimization of the control parameters. The minimum of the cost
function can be found using a gradient algorithm. Yet one should keep in
mind that gradient-based methods provide a local minimum. Since the adjoint
equations are linear with respect to the time-evolving Navier-Stokes solution,
several iterations of DNS and adjoint computation need to be performed. The
resulting computational effort limits this approach to two-dimensional inves-
tigations up to now. Wei & Freund [105] applied such control to a randomly
excited mixing layer, leading to a noise reduction of 11 dB. Since the flow field
of the controlled and uncontrolled case do not differ significantly, vortex pair-
ing does not act automatically as an acoustic source. The optimized control is
found to make the flow more uniform. In a harmonically excited mixing layer,
the flow is less chaotic and hence, Spagnoli [92] achieved a slightly lower noise
reduction, there. These results show that actuation requires only little energy.
However, the resulting control is quite complex in space and time and thus, the
actual design of an active control device for jet-noise reduction remains unclear.

1.5 Scope of the Work

Despite the achieved progress in recent decades, jet noise is still an open issue
and the underlying mechanisms are not well understood. Acoustic sources
often correlate with vortex pairing but the origin of sound generation can not be
referred to a specific flow feature yet. It is also unclear in which way the emitted
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sound may generate new hydrodynamic instability waves and hence may form
a feedback loop of acoustic and flow field. However, profound knowledge seems
to be unavoidable to achieve significant jet-noise reduction in the future. In
this context, the present work is intended to provide a detailed insight into
the process of sound generation in a mixing layer. To avoid modeling, spatial
direct numerical simulation is used to compute the flow and relevant portions
of the acoustic farfield. The topics worked on are the following:

• development of a highly-accurate DNS code for aeroacoustic simulations

• identification of the fundamental mechanisms of flow-induced noise gen-
eration in a mixing layer

• determination of the influence of the nozzle end

• investigation of the mechanisms of serrated nozzle ends and their effect
on sound generation

• simulation of a mixing layer with a turbulent boundary layer upstream
of the nozzle end

The first objective is the development of a new DNS code for aeroacoustic
simulations based on unsteady compressible Navier-Stokes equations, given in
chapter 2. The numerical scheme including appropriate boundary conditions
for aeroacoustic simulations is presented in chapter 3. The discretization is
designed with great care, including an accuracy analysis on non-uniform grids
(appendix A). Beyond accuracy and computational efficiency (appendix C),
emphasis is set on the flexibility of the code, allowing a wide range of applica-
tions like the trailing edge of a nozzle or a complete airfoil. The DNS code is
part of a complete framework including linear stability theory, pre- and post-
processing. A new approach to deal with multiscale problems is the coupling of
DNS with an acoustic solver whose principal functionality is shown in appendix
D.

The numerical method is verified by comparing its results of a mixing layer with
a reference case and spatial linear stability theory (chapter 4). Additionally,
this rather generic case serves to determine the flow features which are relevant
for noise generation. A more realistic configuration is achieved by adding the
nozzle end to the simulation. The effects of thickness and spanwise shape are
considered in chapters 5 and 6, respectively. In chapter 7, the focus is set on a
mixing layer at higher Reynolds number, emanating from a turbulent boundary
layer at the nozzle. A final conclusion (chapter 8) summarizes the findings and
provides an outlook on future research.
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2 Physical Model

Direct numerical simulations are intended to be an exact representation of the
reality. However, modeling takes place by defining the integration domain and
the partial differential equations to be solved. In the following, this mathemat-
ical representation is described.

2.1 Notation

The Cartesian reference system (x, y, z) for the computations is sketched in
figures 2.1 and 2.2 for two exemplary configurations. The x- axis is normal to
the leading or trailing edge of the geometry pointing in streamwise direction.
For a flat plate, the x-axis is aligned to the wall and in case of a vanishing
sweep angle, it corresponds to the flow direction of the freestream. The y-axis
is aligned in vertical direction with the x-y plane being normal to the span-
wise z-direction, forming a right-handed coordinate system with periodicity in
spanwise direction. The corresponding velocity components are u, v and w for
x-, y- and z-direction, respectively.
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Figure 2.1: Sketch of a typical integration domain for the simulation of a bound-
ary layer along a flat plate with disturbance strip and damping zone.
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Figure 2.2: Integration domain for the mixing layer behind a splitter plate with
the fast stream uI on top and the slow stream uII below the splitter
plate.

All computations are performed in non-dimensional quantities. Velocities are
normalised by the reference velocity ũ∞, temperature T̃ and density ρ̃ with their
corresponding free-stream values being marked with the subscript ∞. The tilde
denotes dimensional quantities. Length scales are made non-dimensional with
the reference length L̃ and time t̃ with L̃/ũ∞:

u =
ũ

ũ∞
, v =

ṽ

ũ∞
, w =

w̃

ũ∞
,

ρ =
ρ̃

ρ̃∞
, T =

T̃

T̃∞
,

x =
x̃

L̃∞
, y =

ỹ

L̃∞
, z =

z̃

L̃∞
, t = t̃ · ũ∞

L̃
. (2.1)

With the above quantities, we obtain the normalised pressure and heat capac-
ities to:

p =
p̃

ρ̃∞ũ2
∞
, cp = c̃p ·

T̃∞
ũ2
∞
, cv = c̃v ·

T̃∞
ũ2
∞
. (2.2)

Using their free-stream values to normalise viscosity µ̃ and thermal conductivity
ϑ̃ yields the Reynolds number

Re =
ρ̃∞ũ∞L̃

µ̃∞
(2.3)
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and the Prandtl number

Pr =
c̃pµ̃∞

ϑ̃∞
. (2.4)

Compressibility effects are described by the global Mach number, being the
ratio of the free-stream velocity and the speed of sound at reference conditions:

Ma∞ =
ũ∞
ã∞

(2.5)

In case of a mixing layer, two freestream conditions exist which are marked by
the subscripts I and II for the upper and lower stream, respectively. Within this
work, the quantities at the upper stream are used for normalization (∞ =I).

2.2 Governing Equations

The three-dimensional unsteady compressible Navier-Stokes equations are given
in conservative formulation with the solution vector

Q =
`
ρ, ρu, ρv, ρw,E

´T
(2.6)

containing the density, the three mass fluxes and the total energy per volume
E which is generally defined as

E = ρ

Z
cv dT +

ρ

2

`
u2 + v2 + w2´ . (2.7)

The compressible Navier-Stokes equations can be written in vector notation

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0 (2.8)

with the flux vectors F, G and H:

F =

266664
ρu

ρu2 + p− τxx
ρuv − τxy
ρuw − τxz

u(E + p) + qx − uτxx − vτxy − wτxz

377775 (2.9)
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G =

266664
ρv

ρuv − τxy
ρv2 + p− τyy
ρvw − τyz

v(E + p) + qy − uτxy − vτyy − wτyz

377775 (2.10)

H =

266664
ρw

ρuw − τxz
ρvw − τyz

ρw2 + p− τzz
w(E + p) + qz − uτxz − vτyz − wτzz

377775 , (2.11)

containing normal stresses

τxx =
µ

Re

„
4

3

∂u

∂x
− 2

3

∂v

∂y
− 2

3

∂w

∂z

«
(2.12)

τyy =
µ

Re

„
4

3

∂v

∂y
− 2

3

∂u

∂x
− 2

3

∂w

∂z

«
(2.13)

τzz =
µ

Re

„
4

3

∂w

∂z
− 2

3

∂u

∂x
− 2

3

∂v

∂y

«
, (2.14)

shear stresses

τxy =
µ

Re

„
∂u

∂y
+
∂v

∂x

«
(2.15)

τxz =
µ

Re

„
∂u

∂z
+
∂w

∂x

«
(2.16)

τyz =
µ

Re

„
∂v

∂z
+
∂w

∂y

«
(2.17)

and the heat flux

qx = − ϑ

(κ− 1)RePrMa2
∞
· ∂T
∂x

(2.18)

qy = − ϑ

(κ− 1)RePrMa2
∞
· ∂T
∂y

(2.19)

qz = − ϑ

(κ− 1)RePrMa2
∞
· ∂T
∂z

. (2.20)
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2.3 Properties of the Fluid

The fluid is assumed to be a non-reacting ideal gas with the equation of state
providing closure of the equation system:

p =
ρ · T
κMa2

∞
(2.21)

Hence, the speed of sound in non-dimensional quantities is

a =

√
T

Ma∞
. (2.22)

The heat capacities for constant pressure and volume are considered to be
constant:

cp =
1

(κ− 1) ·Ma2
∞
, cv =

1

κ (κ− 1) ·Ma2
∞

(2.23)

Thus, the adiabatic index κ = cp/cv is fixed as well and the integral in equa-
tion (2.7) simplifies to the product cv · T . The heat capacity ratio κ = 1.4
used throughout the simulations is the theoretical value for a diatomic gas and
corresponds well to the thermodynamical properties of air.

Temperature dependence of viscosity is modelled by the Sutherland law [95]
for temperatures above the Sutherland temperature T̃s = 110.4K:

µ̃(T ) = µ̃0(T̃0) · T 3/2 · 1 + Ts
T + Ts

, (2.24)

where Ts = T̃s/T̃∞ is the nondimensional Sutherland temperature and µ̃0(T̃0 =
280K) = 1.735·10−5kg/(ms). For temperatures below Ts, a linear temperature
dependence of the viscosity is assumed. The Prandtl number is fixed to Pr =
0.71 being a typical value for air at moderate conditions.
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3 Numerical Method

In this chapter, the numerical methods used for the solution are described. The
following sections provide an outline of the developed simulation framework
for compressible flows based on the DNS code NS3D. The set of tools includes
linear stability theory, initial conditions and postprocessing.

3.1 Code Development at IAG

The history of direct numerical simulations at IAG1 ranges back to the first
spatial simulations of instability waves by Fasel [30]. In 1991, Rist & Fasel [83]
presented the first spatial simulations of three-dimensional non-linear transi-
tion. The numerical scheme for incompressible flows was further developed by
Kloker [52] et al. [53], allowing stable long-time simulations by implementing
alternating biased finite differences and a special buffer zone at the outflow
boundary. Later, the spatial discretization was extended to compact finite dif-
ferences [55]. Despite being specialized to boundary layers along a flat plate,
special modifications of the incompressible code allowed the computation of
other flow configurations: for example, Hipp-Kalthoff [43] applied it to incom-
pressible mixing layers.

DNS of the compressible Navier-Stokes equations was initiated at IAG by
Thumm [99]. His numerical scheme was based on explicit finite differences
and a second-order time integration scheme. The spectral ansatz allowed cases
which are symmetric in spanwise direction. Eissler [27] applied it to supersonic
boundary layers with the following improvements: alternating compact finite
differences in streamwise direction and the 4th-order Runge-Kutta scheme for
time integration. By its adaptation to conical coordinates, Fezer & Kloker [32]
simulated the supersonic boundary layers along a cone. The numerical scheme
was extended to curvilinear grids by Pagella et al. [79], allowing the computa-
tion of a supersonic boundary layer along a compression ramp.

With the NEC-SX6 and SX8 [12], new supercomputers were installed at HLRS
in 2004 and 2005, respectively. Due to the new architecture with multiple

1Up to 1990, the transition research group was affiliated to the Institut A für Mechanik
of the Universität Stuttgart.
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shared-memory nodes, the previously used purely shared-memory paralleliza-
tion showed to be no more sufficient. Additionally, one may expect aeroacoustic
simulations of mixing layers including the nozzle end to be quite difficult using
a DNS code which is specialized on boundary layers. Therefore, the new DNS-
code NS3D has been developed, satisfying the scientific and computational
requirements.

3.2 Simulation Framework

Obtaining DNS results does not only require the simulation itself, it also in-
cludes pre- and postprocessing as well as stability analysis of the considered
baseflow. By far, most computer resources are required by the DNS code. Nev-
ertheless the user spends a lot of time in setup of the problem and analysis of
the computed data. Therefore, a complete framework of tools with a common
structure of in- and output files, based on the EAS3 tool set [75], has been
developed. This not only leads to a more efficient work for the scientist, it also
provides reproducibility of the complete set of results. The typical workflow
for a DNS is illustrated in figure 3.1.

DNS

DNS

Initial Condition

Linear Stability Theory

Postprocessing

grid, flow conditions (e.g. boundary layer equations)

converged baseflow

unsteady flow−field

amplitudes, vortices, acoustics, ...

eigenfunctions, amplification rates

Figure 3.1: Workflow for DNS including pre- and postprocessing as well as sta-
bility analysis.

The first step is the definition of the problem itself. Here, the flow conditions,
the grid and a possible domain decomposition are specified, providing initial
data for the DNS. Of course, this step strongly depends on the problem to
be investigated, resulting in specific tools. If the problem allows a steady-
state solution, the DNS code may be used already here to get a converged
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solution of the Navier-Stokes equations. The initial condition or a converged
solution obtained from the previous step can be used in linear stability theory,
providing amplification rates and eigenfunctions. This information is used to
define disturbance generation for the actual simulation performed by the DNS
code. The resulting output is raw binary data with the flow variables given on
the computational grid for several time steps. To get a better understanding of
the flow physics, postprocessing is used to compute e.g. spectra and amplitudes
or vortex criteria.

3.3 DNS Code

The newly developed DNS code NS3D is the core of the simulation framework,
solving the unsteady compressible Navier-Stokes equations from section 2.2.
On the one hand, the implemented domain decomposition in the x-y plane
fulfills the parallelization requirements. On the other hand, its combination
with grid transformation allows the application of the numerical scheme to a
wide range of geometrical configurations.

3.3.1 Spatial Discretization

The spatial discretization in x- and y-direction is based on compact finite differ-
ences (FD) of 6th order. With the non-linear terms generating higher harmon-
ics, dealiasing is necessary to stabilize the numerical scheme. This is achieved
by using a high-order McCormack-type scheme with alternating up- and down-
wind biased finite differences for the convective terms. As shown by Kloker
[55], this provides damping of high-wavenumber modes regardless of the flow
direction. Thereby, the biasing of the finite differences changes with every sub-
cycle of the time integration scheme, given in section 3.3.2.

The classical analysis of finite differences is based on the modified wavenumber
[55, 58]. For a simple wave with wavenumber k, the first and second spa-
tial derivatives are complex proportional to the wavenumber and its square,
respectively. Accordingly, the modified wavenumber k∗mod and the modified
wavenumber square k∗2mod are defined as the ratio between the numerically com-
puted spatial derivative and the wave itself:

k∗mod = −i ·∆ζ ·
(∂Φ/∂ζ)num.

Φ
(3.1)

k∗2mod = −∆ζ2 ·
`
∂2Φ/∂ζ2

´
num.

Φ
, (3.2)
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where Φ is an arbitrary flow variable and i =
√
−1. Thus, the exact expres-

sions of equations (3.1) and (3.2) are the wavenumber k∗ and its square k∗2,
respectively. The superscript ∗ indicates that the wavenumber k is normalized
with the step size ∆ζ by k∗ = k ·∆ζ. The above equation reveals that k∗ = π
corresponds to the least resolved wave with two points per wave length and
k∗ = 0 means an arbitrarily fine resolution of the wave. The deviation of the
real part from the exact solution corresponds to an amplitude error while the
imaginary part indicates the phase shift which is due to a non-symmetric sten-
cil.

Different compact finite differences with varying dissipation properties are im-
plemented and may be used according to the flow parameters of the simulation.
For example, high Mach numbers will cause relevant triple products requiring
more dissipation than a low Mach-number flow with marginal density fluctu-
ations. For the simulations of subsonic flows considered within this work, the
following alternating stencils (D1) are used for convective terms [54]:

1

5
· ∂Φ

∂ζ

˛̨̨̨
j−1,+

+
3

5
· ∂Φ

∂ζ

˛̨̨̨
j,+

+
1

5
· ∂Φ

∂ζ

˛̨̨̨
j+1,+

=
−1 · Φj−2 − 19 · Φj−1 + 11 · Φj + 9 · Φj+1

30 ·∆ζ (3.3)

1

5
· ∂Φ

∂ζ

˛̨̨̨
j−1,−

+
3

5
· ∂Φ

∂ζ

˛̨̨̨
j,−

+
1

5
· ∂Φ

∂ζ

˛̨̨̨
j+1,−

=
−9 · Φj−1 − 11 · Φj + 19 · Φj+1 + 1 · Φj+2

30 ·∆ζ (3.4)

The subscripts + and − denote up- and downwind biasing, respectively and j
is the index of the corresponding grid point. The stepsize ∆ζ in equidistant
computational space is ∆ξ or ∆η, depending on the direction ζ of the spatial
derivative. The convective terms are discretized in conservative formulation,
meaning that derivatives of the products like (ρu) or (ρuv) and not of the
primitive variables are computed by the above stencils. The coefficients of
additionally implemented biased compact finite differences are listed in table
3.1.

First derivatives of viscous terms are computed using the standard 6th-order
compact FD:

1 · ∂Φ

∂ζ

˛̨̨̨
j−1

+ 3 · ∂Φ

∂ζ

˛̨̨̨
j

+ 1 · ∂Φ

∂ζ

˛̨̨̨
j+1

=
−1 · Φj−2 − 28 · Φj−1 + 28 · Φj+1 + 1 · Φj+2

12 ·∆ζ (3.5)
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blhs clhs dlhs a b c d e

D1+
1
5

3
5

1
5

− 1
30·∆ζ − 19

30·∆ζ
11

30·∆ζ
9

30·∆ζ

D1− − 9
30·∆ζ − 11

30·∆ζ
19

30·∆ζ
1

30·∆ζ

D2+
1
5

3
5

1
5

− 3
30·∆ζ − 19

30·∆ζ
15

30·∆ζ
9

30·∆ζ − 2
30·∆ζ

D2−
2

30·∆ζ − 9
30·∆ζ − 15

30·∆ζ
19

30·∆ζ
3

30·∆ζ

D3+
1
5

3
5

1
5

− 9
60·∆ζ − 38

60·∆ζ
36

60·∆ζ
18

60·∆ζ − 7
60·∆ζ

D3−
7

60·∆ζ − 18
60·∆ζ − 36

60·∆ζ
38

60·∆ζ
9

60·∆ζ

Table 3.1: Coefficients of the implemented biased FDs D1 to D3 for convective
terms [54]. The coefficients a-e correspond to the grid points j − 2
to j + 2 and coefficients of the left-hand-side are marked with the
subscript lhs.

The real part k∗mod,r for all up- and downwind biased stencils is the same as for

the standard 6th-order compact scheme given by equation (3.5). The dispersion
relation given by the real part of the modified wavenumber is shown in figure
3.2 a). Comparing the 6th-order compact scheme (solid line) with the explicit
schemes of up to the same order reveals a better agreement with the exact so-
lution k∗mod = k∗ in case of a compact discretization. Since the group velocity
is proportional to ∂k∗mod,r/∂k

∗, aliasing occurs from the maximum of k∗mod,r
onwards. The aliasing limit for the 6th-order compact scheme is k∗ = 2.267.
This is an improvement compared to explicit finite differences of 4th and 6th

order by 25% and 17%, respectively. The generation of higher-harmonics by
the non-linear terms in the Navier-Stokes equations as well as aliasing of the
finite differences themselves requires artificial damping of high wave-number
fluctuations to stabilize the numerical scheme.

The imaginary part of the modified wavenumber is responsible for the numerical
damping and is shown for the downwind-biased finite differences D1 to D3 in
figure 3.2 b). With upwind-biased stencils being orientated in the opposite
direction, their imaginary parts differ only by their algebraic sign (k∗mod,i,+ =
−k∗mod,i,−). The higher the absolute value of k∗mod,i, the stronger is the artificial
damping by the forward-backward alternating scheme. Since a quantitative
estimation depends on the time step, it is discussed in section 3.3.2.
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Figure 3.2: a) Real part k∗mod,r of the modified wavenumber for 6th-order com-
pact scheme compared with explicit FDs.
b) Imaginary part k∗mod,i of the downwind biased FDs of table 3.1.
The solid line corresponds to the compact FD given by equation
(3.4).

The second derivative is computed directly using a central stencil since biasing
would cause artificial advection. To provide a consistent order of all spatial
derivatives, the standard compact FD of 6th order is used:

2· ∂2Φ

∂ζ2

˛̨̨̨
j−1

+ 11 · ∂
2Φ

∂ζ2

˛̨̨̨
j

+ 2 · ∂
2Φ

∂ζ2

˛̨̨̨
j+1

=
3 · Φj−2 + 48 · Φj−1 − 102 · Φj + 48 · Φj+1 + 3 · Φj+2

4 ·∆ζ2
(3.6)

With this stencil, the second derivative is computed directly and not by apply-
ing the first derivative twice as done by Eissler [27] for example. This provides
a better agreement with the exact solution up to high wavenumbers. The im-
provement is illustrated in 3.3 for explicit and compact FDs of 4th and 6th

order respectively. First of all, the direct computation yields a better accor-
dance with the exact solution k∗2. Additionally, the modified wavenumber
square k∗2mod does not vanish for the least resolved wave (k∗ = π). The finite
value of the second derivative for the saw-tooth mode provides a markedly more
stable and consistent numerical scheme. This is especially important for non-
linear computations as high-wavenumber waves are damped by viscous terms,
now.
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Figure 3.3: Modified wavenumber square k∗2mod for direct calculation of the sec-

ond derivative versus applying the first derivative twice (4th and
6th order).

The above stencils require two neighboring points at both sides. Thus, one
sided and biased finite differences are necessary at the boundaries and at the
next point, respectively. Directly at the boundaries, a one-sided explicit stencil
of the form

∂þΦ

∂ζþ

˛̨̨̨
j=1

=
a · Φj=1 + b · Φj=2 + c · Φj=3 + d · Φj=4 + e · Φj=5

∆ζþ
(3.7)

is used for the first (þ= 1) and the second derivatives (þ= 2). The coefficients
of the corresponding stencil are denoted as a - e. The above equation can be
applied directly to the left and the lower boundary, respectively. For the right
and upper boundaries, the derivative at j = N is computed with the stencil
ranging from j = N − 4 to the last grid point j = N .

The spatial derivatives at the point next to the boundary are computed by the
following biased compact finite difference

blhs ·
∂þΦ

∂ζþ

˛̨̨̨
j=2

+ clhs ·
∂þΦ

∂ζþ

˛̨̨̨
j=3

=
a · Φj=1 + b · Φj=2 + c · Φj=3

∆ζþ

+
d · Φj=4 + e · Φj=5 + f · Φj=6 + g · Φj=7

∆ζþ
, (3.8)

where the coefficients of the left-hand side are marked with the subscript lhs.
Again, the above stencil is given exemplarily for the left and lower boundaries.
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For the right and upper boundaries the direction of the stencil needs to be
reversed as it is the case for the one-sided finite difference.

Depending on the used boundary conditions, different coefficients for FDs of
first and second derivatives can be chosen. Thus, the actual stencils for the
respective boundary conditions are given in section 3.3.3. In case of neighbors,
the tridiagonal equation system due to the compact finite differences ranges
along multiple domains. Its solution is based on a pipelined version of the
Thomas algorithm. As this affects mainly the parallelization, it is explained in
section 3.3.4.

Grid Transformation

With the necessity to capture relevant portions of the acoustic far field, non-
uniform grids are essential to perform aeroacoustic computations efficiently.
Grid stretching is also necessary to construct appropriate outflow boundary
conditions for aeroacoustic simulations, as done by Colonius et al. [24] for
example. Additionally, grid transformation is implemented to extend the ap-
plication of the DNS code beyond a flat plate geometry. Grid transforma-
tion is achieved by mapping the generally non-uniform curvilinear x-y mesh to
the perpendicular computational space ξ-η with uniform spacing ∆ξ and ∆η.
According to Anderson [1], the first spatial derivatives in physical space are
computed as

∂

∂x
=

1

J

»„
∂

∂ξ

«„
∂y

∂η

«
−
„
∂

∂η

«„
∂y

∂ξ

«–
(3.9)

∂

∂y
=

1

J

»„
∂

∂η

«„
∂x

∂ξ

«
−
„
∂

∂ξ

«„
∂x

∂η

«–
(3.10)

J =

˛̨̨̨
˛ ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

˛̨̨̨
˛ =

∂x

∂ξ
· ∂y
∂η
− ∂y

∂ξ
· ∂x
∂η
, (3.11)

with J being the Jacobi determinant. The grid transformation is defined by
the metric coefficients ∂x/∂ξ, ∂x/∂η, ∂y/∂ξ and ∂y/∂η. In general the metrics
are a function of ξ and η as well. Second and mixed derivatives are obtained
by applying equations (3.9) and (3.10) twice. Together with the expansion of
the Navier-Stokes equations, which is necessary to obtain the direct computa-
tion of second derivatives, grid transformation causes huge terms. While the
evaluation of the continuity equation may be done still by hand, the other con-
servation equations require an automated code generation: e.g. the source code
for the energy equation alone ranges along more than 140 lines and its file size
is almost 9 KByte. Thus, the computer algebra system Maple [56] was used
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for the expansion of the Navier-Stokes equations and the subsequent export to
Fortran source code.

The combination of grid transformation and domain decomposition allows
rather complex configurations. An example of a more sophisticated config-
uration is an airfoil shown in figure 3.4. The construction of such a C-grid is
realized by a decomposition into four domains and an appropriate grid trans-
formation.

With the metric terms being derivatives of the coordinates in computational
space, two possible methods exist for their evaluation. The first way is to
use the same discretization method as for regular flow quantities which can
be applied for all cases. The second possibility is an analytical derivation of
the metric terms if the grid transformation is given as an analytical function.
Although one would assume analytical metric coefficients to be the best choice,
it was found to be less accurate than numerical grid transformation, if the
same discretization is used for both metric and flow quantities. A theoretical
analysis and numerical experiments considering the accuracy on non-uniform
grids is given in appendix A and by Babucke and Kloker [5].
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Figure 3.4: Exemplary grid configuration for an airfoil by Schneider [88]. The
domain decomposition is illustrated by black and blue colours.
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Spanwise Discretization

A spectral discretization for the z-direction has been chosen due to the period-
icity in spanwise direction:

Φ(x, y, z, t) =

KX
k=0

Φ̂k(x, y, t) · ei(k·γ0·z) (3.12)

with Φ being any flow variable, Φ̂k its complex Fourier coefficient and K the
number of spanwise modes. Since all flow variables are real values, the modes
k < 0 are complex conjugate to their corresponding modes k > 0

Φ̂−k = c.c.
n

Φ̂k
o
. (3.13)

Accordingly, only the modes k ≥ 0 are considered in equation (3.12). The
fundamental spanwise wavenumber γ0 is given by the spanwise extent of the
integration domain λz:

γ0 =
2π

λz
(3.14)

If a two-dimensional initial condition is used and disturbances of u, v, ρ, T ,
p are symmetric and disturbances of w are antisymmetric, all flow quantities
are symmetric/antisymmetric with respect to z = 0. This transforms equation
(3.12) to

Φ(x, y, z, t) = Φ0,r(x, y, z, t) +2 ·
KX
k=1

Φ̂k,r(x, y, t) · cos (k · γ0 · z)(3.15)

for Φ ∈ [u, v, ρ, T, p]

Φ(x, y, z, t) = −2 ·
KX
k=1

Φ̂k,i(x, y, t) · sin (k · γ0 · z) (3.16)

for Φ ∈ [w] .

In this case, only half of the spanwise extent needs to be considered (0 ≤ z ≤
λz/2 instead of 0 ≤ z < λz). This reduces the amount of grid points in z-
direction to half the points plus one.

In previous implementations at the IAG, the main part of the computation was
done in Fourier space and flow variables were transformed to physical space
only for the computation of non-linear terms. This is favorable for the incom-
pressible Navier-Stokes equations since it allows to solve the Poisson equation
independently for each mode. For the compressible case, no elliptic equation
occurs. Furthermore, the compressible Navier-Stokes equations solely consist of
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non-linear terms. To avoid unnecessary transformations, all computations are
performed in physical space and the Fourier-transformation to spectral space
is only carried out to compute the spanwise derivatives. For this reason it is
relatively easy to allow both symmetric and non-symmetric simulations. The
latter is used for the non-symmetric serration (section 6.3) and was applied to
a mixing layer with sweep angle by Kamoun [48].

According to equation (3.12), first and second derivatives can be obtained easily
by multiplying the spectral components Φk with their corresponding wavenum-
ber (i · kγ0) or its square −(kγ0)2, respectively. The following inverse Fourier
transformation provides the spanwise derivatives in physical space. For the
symmetric case, the proper inverse transformation has to be chosen according
to symmetry/antisymmetry of the corresponding derivatives:

• symmetric derivatives: ∂w/∂z, ∂2Φ/∂z2 for Φ ∈ [u, v, ρ, T, p]

• antisymmetric derivatives: ∂Φ/∂z for Φ ∈ [u, v, ρ, T, p], ∂2w/∂z2

To suppress aliasing, only 2/3 of the maximum number of modes for a specific z-
resolution are used [21]. Primarily, this is done by setting the higher harmonics
k > (2/3 ·K) to zero before transforming the derivatives back to physical
space. Since other products which are not affected by spanwise derivatives
generate higher harmonics as well, an additional filter with the same cut-off
wavenumber as above is required. Since the initial condition is usually two-
dimensional or at least well resolved in spanwise direction, it is sufficient to
filter the time derivatives ∂Q/∂t of the solution vector (2.6). For some cases,
e.g. the wake behind a blunt body [51], non-linear boundary conditions may
generate higherharmonics in spanwise direction. In such cases, the filter can
be applied directly to the conservative variables.

3.3.2 Time Integration

For time integration, the classical four-step Runge-Kutta (RK) scheme has been
chosen. This method is of high accuracy (O4) and robust with respect to oscil-
lation and diffusion problems as shown in figure 3.5 a). Based on equidistant
time levels marked with the superscript l, it consists of four substeps where ∆t
is the time step from level l to l + 1. The conservative variables listed in the
solution vector Q are integrated in time:
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(3.20)

At each intermediate level, the time derivatives ∂Q/∂t and hence, the spa-
tial derivatives have to be recomputed. The direction of the finite differences
(3.3) and (3.4) for convective terms changes with every substep, indicated by
the subscript +/−. To avoid any preferred direction of the spatial discretiza-
tion, the alternation differs at each time step including all forward-backward
combinations in x- and y-direction.

Numerical Dissipation

The actual damping rate is not only a function of the imaginary part of the
modified wavenumber but of the time step ∆t as well. Therefore, the time
integration needs to be considered as well to get quantitative information about
numerical damping of the scheme. For this, we consider a linear advection
problem transporting a wave with constant speed c. The first spatial derivative
can be expressed by the modified wavenumber and the actual value according
to equation 3.1. Inserting this to the Runge-Kutta scheme of equations (3.17)
to (3.20), we obtain after some algebra the solution at the new time step l+ 1:

Φl+1

Φl
= 1− i · CFL · k∗mod,r −

1

2
· CFL2 · k∗2mod,r

+ i · 1

6
· CFL3 · k∗3mod,r +

1

24
· CFL4 · k∗4mod,r

− 1

2
· CFL2 · k∗2mod,i + i · 1

6
· CFL3 · k∗mod,rk∗2mod,i

+
1

12
· CFL4 · k∗2mod,rk∗2mod,i +

1

24
· CFL4 · k∗4mod,i (3.21)
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where CFL is the Courant-Friedrichs-Lewy number:

CFL =
c ·∆t
∆ζ

(3.22)

The first two lines of equation (3.21) are the Taylor expansion in time containing
only the real part of the modified wavenumber. Hence, only the following lines
are responsible for numerical damping due to the spatial discretization. The
leading term of k∗mod,i is of order CFL2, so damping is mainly proportional
to the square of the time step and independently of the flow direction. The
amplitude ratio after one time step is given by the absolute value of equation
(3.21). A more significant quantity is the amplitude’s change after one period
of the considered wave, see Kloker [55]. The number of time steps per period
is 2π/ (CFL · k∗) and thus, the amplitude ratio after one period is

APmod =

˛̨̨̨
Φl+1

Φl

˛̨̨̨ 2π
CFL·k∗

. (3.23)

The behavior of APmod based on the Runge-Kutta scheme and the alternating
compact finite differences D1 of equations (3.3) and (3.4) is illustrated for
different CFL numbers in figure 3.5 b).
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Figure 3.5: a) Stability diagram of the 4th-order Runge-Kutta scheme and the
simplified stability limit (half-circle with radius 2.8).
b) Amplitude ratio after one period of the linear advection prob-
lem for various CFL numbers: RK4 − O4 time integration with
alternating compact FDs D1.
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For small CFL numbers, only high wavenumbers are damped. For larger time
steps (CFL ≥ 0.8), damping is no longer continuously increasing with the non-
dimensional wavenumber k∗ and for CFL = 1 the stability limit is already
exceeded.

Time-step Limit

With an explicit time integration, the time-step limit has to be hold. Consider-
ing computational efficiency, a time step as large as possible is favorable since
less iterations are necessary to compute a specific period of time. Additionally,
the numerical damping due to the biased finite differences decreases for small
CFL numbers and dealiasing in the x-y plane is no more ensured. Hence, com-
putations may crash even because of ∆t being too small. In case the numerical
damping of the biased finite differences is no more sufficient because of a rig-
orous time-step limit, the computation can be stabilized by applying a spatial
filter.

To estimate the maximum time step, a mixed convection/diffusion equation is
considered:

∂Φ

∂t
+ (|u|+ a) · ∂Φ

∂x
+ (|v|+ a) · ∂Φ

∂y
+ (|w|+ a) · ∂Φ

∂z

= d ·
„
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2

«
, (3.24)

where the largest convection speed in each direction is taken into account. The
fastest propagation is given by the downstream running acoustic wave with its
velocity being the sum of the flow speed and the speed of sound a.

The second constraint of the time step is the strongest viscous term d which
may be either viscosity or heat conductivity:

d = max

(
µ

ρ·Re
ϑ

ρ(κ−1)Ma2
∞PrRe

(3.25)

The highest occurring frequencies ωr,max = c · k∗mod,max/∆ζ and temporal
decay rates ωi,max for equation (3.24) are given by the largest values of the
first and second spatial derivatives. Considering only one spatial direction
with a uniform step size, these are

ωr,max =
c · k∗mod,max

∆ζ
, ωi,max =

d · k∗2mod,max
∆ζ2

(3.26)
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where c ∈ (|u|+ a) , (|v|+ a) , (|w|+ a) is the velocity of the downstream run-
ning acoustic wave for the respective spatial direction. As illustrated by figure
3.5 a), the stability limit of the 4th-order Runge-Kutta scheme may be esti-
mated by |ω ·∆t|max = 2.8. Thus, the maximum time step is given by

∆tmax =
2.8q
|ωmax|2

(3.27)

where |ωmax|2 = max
˘
ω2
r + ω2

i

¯
is the maximum along all grid points. In

figure 3.5 a), this corresponds to the distance from the origin divided by the
time step. For the orthogonal uniform grid, it is computed as follows:

|ωmax|2 =

»
(|u|+ a) · k∗mod,max,x

∆x
+

(|v|+ a) · k∗mod,max,y
∆y

+
(|w|+ a) · k∗mod,max,z

∆z

–2

+

"
d ·

 
k∗2mod,max,x

∆x2
+
k∗2mod,max,y

∆y2
+
k∗2mod,max,z

∆z2

!#2

(3.28)

In case of non-uniform curvilinear grids, first derivatives in physical space may
be replaced easily by their counterparts in equidistant computational space
according to equations 3.9 and 3.10. For second derivatives, the evolving terms
would be to large for a pure estimation of the time step limit. Therefore, only
effective step sizes are considered for the viscous terms:

|ωmax|2 =

"
(|u|+ a) · ∂y

∂η
− (|v|+ a) · ∂x

∂η

J
·
k∗mod,max,ξ

∆ξ

+
(|v|+ a) · ∂x

∂ξ
− (|u|+ a) · ∂y

∂ξ

J
·
k∗mod,max,η

∆η

+
(|w|+ a) · k∗mod,max,z

∆z

–2

+

264d ·
0B@ k∗2mod,max,ξ“
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∂ξ
·∆ξ

”2

+
“
∂y
∂ξ
·∆ξ

”2

+
k∗2mod,max,η“
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∂η
·∆η

”2

+
“
∂y
∂η
·∆η

”2 +
k∗2mod,max,z

∆z2

1CA
375

2

(3.29)
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Disturbance Computation

Apart from a regular simulation, the code allows a disturbance computation
where the baseflow given by the initial condition is assumed to be a steady-
state solution of the Navier-Stokes equations, e.g. used in [5]. Due to their non-
linearity, an actual disturbance formulation of the Navier-Stokes equations does
not seem to be feasible. The approach implemented here goes back to Thumm
[99] and does not require a new formulation of the equations. Instead, the
time derivatives of the conservative variables are computed for the baseflow
for each combination of the forward-backward biased discretization. During
a simulation in disturbance mode, the stored values ∂Q0/∂t are subtracted
from the computed time derivatives. Thus, the time derivatives of the baseflow
serve as a source term, forcing the prescribed baseflow to be a steady solution.
By using exactly the same discretization for the source term and the actual
computation, this is equivalent to an original disturbance formulation.

In case of boundary conditions which prescribe time derivatives, this procedure
is applied in the same way to the respective boundary. If flow quantities are
prescribed, the deviation of the baseflow is stored and subsequently subtracted
from the newly computed values.

3.3.3 Boundary Conditions

To allow rather complex geometrical configurations, boundary conditions must
be applicable to each boundary which has no neighboring subdomain. Addi-
tionally, future extensions of the code will mostly affect the boundary condi-
tions, e.g. disturbance generation, suction or blowing at the wall. Thus, a
modular implementation is necessary, meaning that each boundary condition
acts independently from neighboring domains or other boundary conditions.
To avoid conflicts at the corners of the subdomains, a ranking of boundary
conditions is introduced so that the code can allocate the respective corner
to the boundary condition which is more restrictive. For the algorithm, two
principal boundary conditions exist:

• prescribing the values themselves, this may be steady or unsteady

• giving time derivatives so that time integration is applied to the respective
boundary.

According to the property of the boundary conditions, the spatial extent of the
Runge-Kutta scheme is determined automatically.

Up to now, a variety of boundary conditions and extensions of them have been
implemented by people using the code, e.g. [62]. With boundary conditions
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being a crucial point for the success of aeroacoustic simulations, special em-
phasis was set on non-reflecting boundary conditions, mainly for the outflow.
The following pages describe the boundary conditions used within this work.

3.3.3.1 Supersonic Inflow

The supersonic inflow is one of the simplest boundary conditions where all flow
variables are prescribed. Apart from using the steady values of the baseflow,
it is possible to add periodic disturbances, given by amplitude and phase dis-
tribution along the inflow boundary. This allows a direct assignment of the
eigenfunctions from linear stability theory (see 3.4) at the inflow. The time-
dependent values of a flow variable Φ are obtained by adding the number of
disturbances N to the steady baseflow Φ0:

Φ(y, t) = Φ0(y) +

NX
j=1

Φ̂j(y) · cos (θj(y) + γj · z − ωj · t) (3.30)

In case of a symmetric computation, both left- and right-traveling waves related
to the symmetry plane z = 0 are introduced. Thus, all disturbances with a
spanwise wavenumber γ have a counterpart with the spanwise wavenumber −γ
and the values at the boundary are given by

Φ(y, t) = Φ0(y) +

NX
j=1

Φ̂j(y) · cos (Θj(y)− ωj · t) · cos (γj · z) . (3.31)

To satisfy the equation of state, temperature fluctuations are not taken from
the eigenfunctions but computed by the equation of state (2.21). Especially
when large domains are used, e.g. to compute the acoustic farfield, the eigen-
functions are typically not given along the whole boundary. To avoid artificial
noise generation at the tail of the given eigenfunction, amplitude- and phase
distributions are extrapolated. According to LST, amplitudes are extrapolated
using an exponential ansatz. With decreasing amplitudes, the phase becomes
less relevant and thus, a linear extrapolation of Θ is sufficient.

Near the boundary, the following finite differences are used for spatial dis-
cretization:
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8

15
· ∂Φ

∂ζ

˛̨̨̨
j=2

+
6

15
· ∂Φ

∂ζ

˛̨̨̨
j=3

=
−25 · Φj=1 − 104 · Φj=2 + 114 · Φj=3

180 ·∆ζ

+
16 · Φj=4 − 1 · Φj=5

180 ·∆ζ (3.32)

2 · ∂
2Φ

∂ζ2

˛̨̨̨
j=2

+ 15 · ∂
2Φ

∂ζ2

˛̨̨̨
j=3

=
79 · Φj=1 + 3126 · Φj=2 − 6810 · Φj=3

180 ·∆ζ2

+
3940 · Φj=4 − 345 · Φj=5 + 6 · Φj=6 + 4 · Φj=7

180 ·∆ζ2
(3.33)

Equation (3.33) is a linear combination of a 6th- and 5th-order formula to
vercome the illness of the pure 6th-order scheme [54, 104]. Contrary to its
name, the supersonic inflow can be used for subsonic flows as well. However,
upstream propagating acoustic waves may not leave the domain.

3.3.3.2 Subsonic Inflow

The implementation of the subsonic inflow is based on the work of Giles [36],
allowing upstream traveling acoustic waves to leave the domain. Based on
the one-dimensional linearized Euler equations, the disturbances can be trans-
formed to the characteristic variables c1 - c5:0BBBB@

c1
c2
c3
c4
c5

1CCCCA =

0BBBB@
−a2

0 0 0 0 1
0 0 ρ0 · a0 0 0
0 0 0 ρ0 · a0 0
0 ρ0 · a0 0 0 1
0 −ρ0 · a0 0 0 1

1CCCCA ·
0BBBB@

ρ′

u′

v′

w′

p′

1CCCCA (3.34)

Quantities of the baseflow are marked by the subscript 0 and the superscript
′ denotes fluctuations where the baseflow quantities are subtracted from the
corresponding flow variables. According to equation (3.34), c1 corresponds to
an entropy disturbance and c2 as well as c3 are vorticity fluctuations Ω′z in
spanwise and Ω′x streamwise direction, respectively. The up- and downstream
travelling acoustic waves are represented by c4 and c5, respectively. While the
first three characteristic fluctuations are propagating with the velocity u0, the
sound waves are convected with (u0 − a0) and (u0 + a0). Thus, we obtain one
outgoing and four incoming disturbances at the subsonic inflow, since u0 < a0

for subsonic flows. Upstream running acoustic waves are capable to pass the
inflow by setting only the incoming fluctuations c1 - c4 to zero. The character-
istic variable c5(j=1) at the inflow is obtained by extrapolating its value from
the interior grid points with a second order stencil:

c5(j=1) = 3 · c5(j=2) − 3 · c5(j=3) + c5(j=4) (3.35)
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With the characteristic disturbances being determined, they are transformed
back to get the primitive variables:0BBBB@

ρ′

u′

v′

w′

p′

1CCCCA =

0BBBBBB@
− 1
a2

0
0 0 1

2·a2
0

1
2·a2

0

0 0 0 1
2·ρ0·a2

0

1
2·ρ0·a2

0

0 1
ρ0·a2

0
0 0 0

0 0 1
ρ0·a2

0
0 0

0 0 0 1
2

1
2

1CCCCCCA ·
0BBBB@

c1
c2
c3
c4
c5

1CCCCA (3.36)

These are added to their corresponding values of the baseflow giving the set of
primitive variables at the inflow. Like for the supersonic inflow, it is possible
to introduce disturbances via amplitude and phase distributions. The fluctu-
ations are simply added after applying the characteristic boundary condition.
This implementation showed the eigenfunctions to be less affected by the char-
acteristic boundary condition than introducing them before the characteristic
boundary condition is applied. The spatial derivatives near the subsonic inflow
are computed the same way as done for the supersonic inflow.

3.3.3.3 Turbulent Inflow

The turbulent inflow allows using unsteady DNS data as inflow condition. This
allows investigations in a turbulent flow field by computing laminar-turbulent
transition only once. The required inflow data can be taken directly from a
localized output of a previous simulation. Usually high temporal resolution is
required so even with a small spatial extent of the data, large files of several GB
can occur. This data is assumed to be periodic in time and is interpolated to the
time steps used within the current simulation. In the proximity of the inflow,
a successive passage from prescribed flow quantities Φinput to their computed
values Φcomp. is provided by

Φ = σ · Φinput + (1− σ) · Φcomp., (3.37)

where σ is the weighting function of the inflow

σ = 1− 6 · x∗5 + 15 · x∗4 − 10 · x∗3 (3.38)

x∗ =
x− x0

∆xramp
. (3.39)

Here, x∗ denotes the coordinate in streamwise direction normalized with the
length of the forcing region ∆xramp. The polynomial of 5th order has been
chosen such that its first and second derivatives are zero at the beginning
and at the end of the ramping region. This guarantees a smooth change-over
between prescribed and computed values as shown in figure 3.6. Additionally,
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the flush ramping function can act as a damping zone for upstream traveling
acoustic waves. In case that the prescribed values are not given along the whole
boundary, a similar weighting function is applied in y-direction towards the free
stream. For the spatial discretization at the grid point next to the boundary,
the same finite differences are used as for the super- and subsonic inflow. A
detailed description of the implementation, including test computations can be
found in the work of Meister [65].

x*

σ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3.6: Weighting function σ for a smooth change-over from prescribed to
computed values.

3.3.3.4 Wall Boundary Condition

At the wall, no-slip (u = w = 0) and impermeability conditions (v = 0) are
applied. Within this work, the wall temperature is assumed to be constant
with its values taken from the initial condition. Alternatively, it is possible
to apply an adiabatic wall where the wall-normal temperature gradient van-
ishes. In this case, the temperature at the wall is computed by a one-sided
finite difference. In the implementation of Eissler [27], the pressure at the wall
was obtained by solving the wall-normal momentum equation. However, this
requires second derivatives at the wall whose computation by a one-sided finite
difference yields bad results and causes additional computational costs. Thus,
the general implementation is the extrapolation of the pressure by a polynomial
of 4th order:

pj=1 = 5 · pj=2 − 10 · pj=3 + 10 · pj=4 − 5 · pj=5 + pj=6 (3.40)
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Since a high-order extrapolation may cause artificial oscillations, an alternative
formulation is implemented as well (e.g. for turbulent flows), setting the wall-
normal derivative of the pressure to zero. This is achieved by an optimized
5th-order finite difference [55]:

pj=1 =
`

415.98004386001 · pj=2 − 49.33319115624 · pj=3

+801.54477983974 · pj=4 − 725.61937450295 · pj=5

+467.51854160051 · pj=6 − 203.30695291712 · pj=7

+ 53.39737032908 · pj=8 − 6.37538573229 · pj=9´
· 1

153.80583132074
(3.41)

This additional constraint is not introduced arbitrarily. Various results show
this to be a valid assumption: a steady flow field and eigenfunctions from lin-
ear stability theory have a vanishing wall-normal pressure gradient at the wall.
Also DNS results using equation (3.40) confirm this approach [10].

Again, the discretization is given exemplarily for the left and lower boundaries
(j = 1, 2). The first derivative in the wall-normal direction is discretized by an
explicit 4th-order biased finite difference

∂Φ

∂ζ

˛̨̨̨
j=2

=
−3 · Φj=1 − 10 · Φj=2 + 18 · Φj=3 − 6 · Φj=4 + 1 · Φj=5

12 ·∆ζ (3.42)

and the second derivative is computed according to equation (3.33). While this
stencil provides good results for the flat-plate boundary layer, the non-central
discretization of second derivatives may cause problems for other configura-
tions. This has been observed for the flow around an airfoil by Schneider [88]
and the wake behind a flat plate with larger thickness by Kleine [51]. In such
cases, the second derivative at the gridpoint next to the wall is computed by a
central stencil of 2nd order:

∂2Φ

∂ζ2

˛̨̨̨
j=2

=
Φj=1 − 2 · Φj=2 + Φj=3

∆ζ2
(3.43)

With actuators usually being mounted on a solid structure, a variety of exten-
sions are implemented for the wall boundary conditions up to now. Examples
are a disturbance strip [10] or blowing/suction through holes or slits by Linn
& Kloker [62]. One of these add-ons is the serrated trailing edge where the end
of the splitter plate is no longer constant along the spanwise direction. As grid
transformation is only implemented for the x-y plane, the spanwise varying
trailing edge is achieved by modifying the connectivity of the affected domains
above and below the splitter plate. Instead of prescribing the wall boundary
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condition along the whole border of the respective domains, an area without
wall can be defined. At these grid points, the wall-normal derivatives are re-
computed using the values from both sides of the splitter plate. This is done at
the quasi-boundary and the next gridpoint, overwriting the spatial derivatives
which are computed regularly by one-sided (3.7) or biased stencils (3.8). To
fulfill the requirements of a modular boundary condition, not interfering with
other components of the code, explicit finite differences are applied. In order
to have similar numerical properties in the notch as in the flow field, the order
of the explicit finite differences is raised to eight. First derivatives of viscous
terms

∂Φ

∂ζ

˛̨̨̨
j

=
3 · Φj−4 − 32 · Φj−3 + 168 · Φj−2 − 672 · Φj−1

840 ·∆ζ

+
672 · Φj+1 − 168 · Φj+2 + 32 · Φj+3 − 3 · Φj+4

840 ·∆ζ (3.44)

and second derivatives

∂2Φ

∂ζ2

˛̨̨̨
j

=
−9 · Φj−4 + 128 · Φj−3 − 1008 · Φj−2 + 8064 · Φj−1 − 14350 · Φj

5040 ·∆ζ2

+
8064 · Φj+1 − 1008 · Φj+2 + 128 · Φj+3 − 9 · Φj+4

5040 ·∆ζ2
(3.45)

are computed by standard central finite differences. This pushes k∗mod,r and
k∗2mod,r towards the compact scheme which is shown in figures 3.7 a) and b),
respectively.

For convective terms, the alternating up- and downwind biased finite differ-
ences are designed such that the imaginary part of the modified wavenumber
is similar to the one of the compact scheme used within the flow field. Keeping
the favorable dispersion relation of the 8th-order scheme yields the difference
between two corresponding coefficients (e.g. j + 1 and j − 1) to be the same
as for the central stencil [55]. The constraint for the central coefficient at grid
point j is the sum of all coefficients being zero. The four unknowns are deter-
mined by requesting k∗mod,i to be the same as scheme D1 at k∗ = 0.5, k∗ = 1,
k∗ = 1.5 and k∗ = π. The resulting up- and downwind-biased finite differences
are given by equations (3.46) and (3.47), respectively. Figure 3.7 a) shows the
good agreement of the dissipation properties between explicit and compact fi-
nite differences. Thus, the different discretization in the notch should not affect
the simulation results.
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∂Φ

∂ζ

˛̨̨̨
j,+

=
13.335153682 · Φj−4 − 93.7757329 · Φj−3 + 377.07560362 · Φj−2

840 ·∆ζ

+
−1310.2242671 · Φj−1 + 961.1784854 · Φj

840 ·∆ζ

+
33.7757329 · Φj+1 + 41.07560362 · Φj+2

840 ·∆ζ

+
−29.7757329 · Φj+3 + 7.335153682 · Φj+4

840 ·∆ζ (3.46)

∂Φ

∂ζ

˛̨̨̨
j,−

=
−7.335153682 · Φj−4 + 29.7757329 · Φj−3 − 41.07560362 · Φj−2

840 ·∆ζ

+
−33.7757329 · Φj−1 − 961.1784854 · Φj

840 ·∆ζ

+
1310.2242671 · Φj+1 − 377.07560362 · Φj+2

840 ·∆ζ

+
93.7757329 · Φj+3 − 13.335153682 · Φj+4

840 ·∆ζ (3.47)
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Figure 3.7: a) Real and imaginary parts of k∗mod,r for 8th-order explicit finite
differences compared to the compact scheme D1.
b) Real part of k∗2mod of the second derivative for 6th- and 8th-order
explicit stencils versus compact discretization of 6th order.
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3.3.3.5 Characteristic Freestream

The characteristic boundary condition at the freestream is similar to the sub-
sonic inflow given (section 3.3.3.2). Due to the orientation of the boundary,
the normal velocity v0 and not the streamwise component u0 of the baseflow is
used to determine the characteristic disturbances. According to the subsonic
inflow, incoming disturbances are set to zero while outgoing disturbances are
extrapolated from the interior of the flow field. Since the boundary condition
is based on a one-dimensional decomposition of the Euler equations, it works
well for waves impinging normally to the boundary. To avoid reflections due to
oblique acoustic waves, an additional damping zone in front of the boundary
is implemented. There, the conservative flow variables are drawn to the base-
flow by adding a source term which is proportional to the fluctuation of the
respective quantity:

∂Q

∂t
=

∂Q

∂t

˛̨̨̨
NS

− d · σ(y) · (Q−Q0) (3.48)

The subscript NS denotes the time derivatives from the Navier-Stokes equa-
tions and d defines the magnitude of the damping. Using a polynomial of 5th

order similar to equation (3.39) for σ(y) provides a smooth transition from no
damping within the flow field to the maximum damping rate d at the bound-
ary. With oblique waves covering a longer distance in the damping zone, the
problematic non-normal waves are affected strongly by the damping zone.

3.3.3.6 Supersonic Outflow

For supersonic flows, a boundary condition similar to the implementation of
Eissler [27] is used. By setting the second derivatives in streamwise direction
to zero, the Navier-Stokes equations can be integrated directly at the outflow
as it is done for the rest of the domain. First derivatives are computed by a
one-sided stencil of 2nd order at the boundary and a 4th-order compact finite
difference at the previous grid point:

∂Φ

∂ζ

˛̨̨̨
j

=
Φj−2 − 4 · Φj−1 + 3 · Φj

2 ·∆ζ (3.49)

∂Φ

∂ζ

˛̨̨̨
j−1

+ 4 · ∂Φ

∂ζ

˛̨̨̨
j

+
∂Φ

∂ζ

˛̨̨̨
j+1

=
−6 · Φj−1 + 6 · Φj+1

2 ·∆ζ (3.50)

A compact stencil of 4th order is used as well for second derivatives directly
in front of the outflow boundary. Including the neglected second derivative on
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the left-hand side yields the stencil for the second last grid point:

∂2Φ

∂ζ2

˛̨̨̨
j−1

+ 10 · ∂
2Φ

∂ζ2

˛̨̨̨
j

=
12 · Φj−1 − 24 · Φj + 12 · Φj+1

∆ζ2
(3.51)

Of course, this procedure is not applicable to simulations with high-amplitude
disturbances. For such cases, a damping zone similar to Kloker et al. [53] can
be used, ramping the fluctuations towards the baseflow. Smooth ramping is
provided by a polynomial of 5th order analogous to equation 3.38. Since this
is applied to all flow quantities, the continuity equation is not fulfilled. Thus,
this method causes huge acoustic reflections in the subsonic regime and it is
not recommended for aeroacoustic simulations.

3.3.3.7 Subsonic Outflow

For flow speeds below the speed of sound, a stronger boundary condition is
necessary. Spatial discretization is done in the same way as for the supersonic
outflow. However, its values directly in front of the boundary are used for the
outflow as well:

∂Q

∂t

˛̨̨̨
N

=
∂Q

∂t

˛̨̨̨
N−1

(3.52)

This allows the flow field to change while specifying that it does not vary in
streamwise direction. Of course, this boundary condition requires fluctuations
to be removed before they reach the outflow boundary. The construction of
such a sponge zone is probably the most crucial part of aeroacoustic simula-
tions since reflections must be smaller than the hydrodynamic fluctuations in
order not to spoil the sensitive acoustic field. This is achieved by a combina-
tion of grid stretching and spatial low-pass filtering as proposed by Colonius
et al. [24]. With the mesh being stretched smoothly towards the outflow, dis-
turbances become increasingly badly resolved as they propagate downstream.
With the effect of the spatial filter depending on the stepsize, perturbations
are continuously dissipated before they reach the outflow boundary. The filter
may be used either explicit or compact, depending on the filter parameter blhs:

blhs · Φ‡j−1 + Φ‡j + blhs · Φ‡j+1

= a · Φj−2 + b · Φj−1 + c · Φj + b · Φj+1 + a · Φj+2 (3.53)

where the superscript ‡ denotes filtered values. The coefficients of a filter of
4th-order accuracy are given by Lele [58]:

a = −1− 2 · blhs
16

, b =
1 + 2 · blhs

4
, c =

5 + 6 · blhs
8

. (3.54)
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For the above stencil of the filter, the transfer function TF which is the ratio of
the filtered and unfiltered values depending on the non-dimensional wavenum-
ber k∗:

TF =
2a · cos (2 · k∗) + 2b · cos (k∗) + c

1 + 2blhs · cos (k∗)
(3.55)

Depending on the chosen filter parameter blhs, the resulting transfer function
is shown in figure 3.8. Independently of blhs, the wiggle mode (k∗ = π) is
completely removed by the filter operation. For the explicit filter (blhs = 0),
the amplitude of a wave with 5 points per wave length already reduces to 90%
of its initial value. By increasing the filter parameter, less resolved waves are
longer preserved, e.g. an amplitude reduction of 10% occures at 2.7 points per
wave length in case of blhs = 0.475. Note that the blhs needs to be smaller
than 0.5 to avoid amplification (TF > 1).

k*

T
F

0 1 2 3
0

0.5

1

1.5 no filtering
0.475
0.4
0.3
0 (explicit)

Figure 3.8: Transfer function TF of the filter in dependency of the non-
dimensional wavenumber k∗ for different filter parameters blhs.

Since non-central filters may cause amplification and phase shifts, the left-hand
side uses non-filtered quantities at the beginning and the end of the filtering
region. A smooth change-over from unfiltered values to filtered quantities is
ensured by ramping the spatial filter with a polynomial according to equation
(3.38). Besides grid stretching and filter parameter, the dissipation in the
sponge region can be controlled by the number of time steps between two
filtering operations.
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3.3.3.8 Coupling with Acoustic Solver

Since the emitted sound is smaller than the hydrodynamic fluctuations by sev-
eral magnitudes, the idea arose to compute the acoustic farfield with a different
code using linearized equations. Additionally, the acoustic field is assumed to
be less affected by viscous terms. Therefore, the linearized Euler equations are
used for the acoustic farfield, within the coupling examples. The code Hydsol,
chosen to compute the sound propagation, is an unstructured Discontinuous
Galerkin method developed at the IAG. Thus, we have a coupling of different
equations, different discretization techniques and different time steps.

To keep the DNS code and the acoustic solver separated, data transmission
is done via the regular network using TCP/IP [80]. Apart from avoiding the
effort to merge two completely different codes, the chosen data exchange allows
to run each code on different machines. While the DNS code is fully vectorized,
the unstructured acoustic code runs best on scalar machines. Of course, this
requires a data transformation from little to big endian and vice versa [73]. In
both codes, the network connection is done only by one MPI process which
collects and distributes the data to the other ones. Thus, each side does not
have to care about the parallelization of the other code.

The acoustic code is started first since the DNS code is subject to the queuing
system on the vector computer. After the DNS code connects to the acoustic
code, initializing data, listed in table 3.2, is exchanged. After that, both parts
know when to send and receive which amount of data. The disturbances of
the primitive variables (ρ′, u′, v′, w′, p′) are exchanged on a structured grid
at the corresponding time levels. While the DNS code sends only the data of
the current time step, the acoustic code hands over the fluctuations at all time
levels up to the following data exchange, including the Runge-Kutta subcycles.
The quantities at these points in time are computed by the acoustic solver
using a Taylor expansion in time [100]. At the actual time step, the spatial
derivatives normal to the coupling plane are computed by explicit 6th-order
finite differences:

∂Φ

∂ζ

˛̨̨̨
j

=
−1 · Φj−3 + 9 · Φj−2 − 45 · Φj−1

180 ·∆ζ

+
45 · Φj+1 − 9 · Φj+2 + 1 · Φj+3

180 ·∆ζ (3.56)

∂2Φ

∂ζ2

˛̨̨̨
j

=
2 · Φj−3 − 27 · Φj−2 + 270 · Φj−1 − 490 · Φj

180 ·∆ζ2

+
270 · Φj+1 − 27 · Φj+2 + 2 · Φj+3

180 ·∆ζ2
(3.57)
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The above stencils are used at the coupling plane and the grid points in front of
it, overwriting the spatial derivatives usually computed by one-sided or biased
finite differences. Since only small-amplitude waves are assumed to pass the
coupling plane to the acoustic solver, the convective terms are discretized by
central stencils as well. A detailed description on the coupling mechanism
including the implementation in the acoustic code is provided by Babucke,
Dumbser and Utzmann [4]. Results of a test case are given in appendix D.

packet direction data

1 Hydsol → NS3D
width of Hydsol ghost cells,
sequence of data exchange

2 NS3D → Hydsol
array sizes for data exchange,

time step ∆t, overall number of time steps,
time steps per period λt,0

3, 4 NS3D → Hydsol
coordinates of Hydsol ghost cells

at upper and lower coupling interfaces

5, 6 NS3D → Hydsol
baseflow in Hydsol ghost cells

at upper and lower coupling interface

7, 8 NS3D → Hydsol
coordinates of DNS ghost points

at upper and lower coupling interface

9 Hydsol → NS3D time step ratio ∆tHydsol/∆tDNS

Table 3.2: Data exchange for initialization of coupling the DNS code NS3D
with the acoustic code Hydsol.

3.3.4 Parallelization

An efficient parallelization is essential to perform large simulations on modern
super-computers. For the NS3D code, a hybrid parallelization of both MPI [77]
and shared memory parallelization is chosen. Due to the fact that the Fourier
transformation requires data over the whole spanwise direction, a domain de-
composition in z-direction would have caused high overhead. Hence, shared
memory parallelization is implemented along the spanwise direction, using Mi-
crotasking [12] on the vector machines at HLRS. Yet the more important part
is the domain decomposition in the x-y plane with data exchange using MPI.
First of all, it is not limited to shared memory architectures but allows to run
a simulation on multiple nodes. Additionally, domain decomposition enables
more complex geometrical configurations as discussed above.
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Communication between neighboring domains is only required for computing
spatial derivatives normal to the catenation of two domains. All other oper-
ations are local for each domain. The right-hand side of a finite difference is
computed easily by exchanging the current flow quantities near the interface.
The crucial part for an efficient parallelization is the solution of the tridiagonal
equation system

blhs,j · Φζ,j−1 + clhs,j · Φζ,j + dlhs,j · Φζ,j+1 = RHSj (3.58)

with RHS being the right-hand side of the compact finite difference (see section
3.3.1). This linear equation system needs to be solved for the spatial derivatives
Φζ at all grid points j = 1, ..., N , ranging along multiple domains. The common
algorithm for solving this is the Thomas algorithm, e.g. [81]. It is made up of
three recursive loops:

1. forward loop of left-hand side:

c∗lhs,1 = clhs,1

c∗lhs,j = clhs,j − blhs,j ·
dlhs,j−1

c∗lhs,j−1

, j ∈ [2, N ] (3.59)

2. forward loop of right-hand side:

Φ∗ζ,1 =
RHS1

c∗lhs,1

Φ∗ζ,j =
−blhs,j · Φ∗ζ,j−1 +RHSj

c∗lhs,j
, j ∈ [2, N ] (3.60)

3. backward loop of right-hand side:

Φζ,N = Φ∗ζ,N

Φζ,j = Φ∗ζ,j −
dlhs,j

c∗lhs,j
· Φζ,j+1, j ∈ [(N − 1), 1] (3.61)

Since the first step involves only the coefficients of the left-hand side, it has
do be done only once at the initialization of the simulation. The forward and
backward loop of the right hand side have to be computed at every intermediate
Runge-Kutta step. The inherent difficulty regarding a parallel implementation
is that both loops require values from the previous step: Φ∗ζ,j−1 for the forward
loop and Φζ,j+1 for the backward loop (note that equation (3.61) goes from
[N − 1] to 1). An ad-hoc implementation would lead to large dead times be-
cause each process has to wait until the previous domain has finished. To avoid
a serialization of this part of the code, we make use of the fact that we have to



50 3 Numerical Method

compute not only one, but 21 and 25 spatial derivatives in ξ- and η-direction,
respectively. The so-called pipelining works as follows: the first domain starts
with the forward loop of derivative 1. After its completion, the intermediate
value Φ∗ζ at the last grid point of domain 1 is sent to domain number 2. While
the second domain continues with derivative 1, the first domain continues with
the computation of derivative 2. The subsequent backward loop works in the
reverse direction accordingly. The resulting pipelining is illustrated in figure
3.9 exemplarily for four derivatives and three domains.
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MPI proc 1

MPI proc 2

CPU time

#1 #2 #3 #4

#3#2 #4#1

#1 #2 #3 #4MPI proc 3

Figure 3.9: Illustration of the pipelined Thomas algorithm for four derivatives
(#1 to #4) on three domains, showing the forward loop of the
right-hand side. The horizontal axis represents computational time,
green denotes the actual computation, red MPI communication and
hatched areas correspond to dead times.

Neglecting communication time yields the theoretical speedup and the parallel
efficiency of the pipelined Thomas algorithm:

SU =
m · n

m+ n− 1
(3.62)

e =
m

m+ n− 1
, (3.63)

where n denotes the number of domains in a row or column and m the number
of derivatives in the corresponding direction. For the maximum of m = 25
spatial derivatives, the theoretical speed-up and the efficiency of the pipelined
Thomas algorithm are shown in figure 3.10 a). Indeed, the efficiency of the
parallelization decreases to less than 50% for 30 domains in a row, but this
holds only for the solution of the tridiagonal equation system. Since all other
computations are local for each MPI process, the decrease of the parallel effi-
ciency is less distinctive for the complete simulation. If we assume the spatial
derivatives in ξ- and η-direction to require 15% of the CPU time (appendix C
shows this to be a reasonable value), the overall efficiency stays well above 70%
for 100 domains and beyond, as one can see in figure 3.10 b). Furthermore,
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shared memory parallelization allows to compute each domain with multiple
processes. Each MPI process and hence, each domain reads and writes its own
files with the data being stored in the binary EAS3 file format [75]. This allows
parallel file I/O and an arbitrary alignment of the domains.
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Figure 3.10: a) Speed-up SU and efficiency e of the pipelined Thomas algorithm
versus the number of domains in a row/column (for 25 spatial
derivatives).
b) Overall parallel efficiency versus the number of MPI processes
for a rectangular domain aligned in 1, 2 and 4 rows.

Periodicity

Of course, it is possible to specify the domain decomposition such that period-
icity in a direction may occur. Using compact finite differences at the periodic
boundary as well would result in a pentadiagonal equation system. Since we fo-
cus on spatial simulations, less emphasis was placed on the numerical properties
of the periodic interface compared to the engrailed trailing edge for example.
Hence, standard explicit finite differences are used at the periodic interface and
the next/previous grid points:

∂Φ

∂ζ

˛̨̨̨
j

=
Φj−2 − 8 · Φj−1 + 8 · Φj+1 − Φj+2

12 ·∆ζ (3.64)

∂2Φ

∂ζ2

˛̨̨̨
j

=
−Φj−2 + 16 · Φj−1 − 30 · Φj + 16 · Φj+1 − Φj+2

12 ·∆ζ2
(3.65)

The 4th-order stencils have been chosen since they require the same number of
ghost points as the compact scheme.
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Index Inversion

The combination of domain decomposition and grid transformation allows a
wide range of geometries to compute. However, some geometrical configura-
tions require a special conjunction of two domains. One example is the flow
around an airfoil, discretized by a C-grid (see figure 3.4 for example). Assuming
a regular connectivity past the airfoil (the same x-indices are connected behind
the trailing edge), the first domains on top and below the airfoil need to be
combined at the leading edge. As illustrated in figure 3.11, the combination of
two left boundaries leads to a flip of the mesh indices. Below the airfoil, the
grid point directly at the wall is the last point in wall-normal direction (index
N). For the upper domain, the first grid points (index 1) are located on the
surface of the airfoil.

Besides that, these two domains are connected at their left boundaries, unlike
the usual combination of a left boundary with a right one. This is not captured
by the Thomas algorithm for the tridiagonal equation system since it requires
a left boundary condition to determine in which domain to start. Hence, this
particular case is implemented like a boundary condition with data exchange
between the two affected domains. For the spatial discretization, the explicit
finite differences of equations (3.44)-(3.47) are used. As discussed in section
3.3.3.4, this provides similar numerical properties as the compact scheme which
is used in the rest of the flow field.

N

2N

1

N−1

2 N−1

1

Figure 3.11: Illustration of grid indices within the connection of two domains
at the leading edge of an airfoil.
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3.4 Linear Stability Theory

Linear stability theory is the primary method to gain information on amplified
disturbances depending on their frequencies. Hence, it is an important tool
to determine the disturbance generation for the DNS code. Furthermore, LST
can be used for verification and data analysis by comparing its amplification
rates with those obtained from the simulation. For a detailed description of
LST including its historical development, please refer to Mack [63].

3.4.1 Fundamentals

In analogy to the incompressible case, the compressible stability equations are
obtained by splitting each flow variable in a steady baseflow (subscript 0) and
a fluctuation (marked with ′):

Φ = Φ0 + Φ′, Φ ∈ (u, v, w, ρ, T, p, µ, ϑ) (3.66)

This is done for the set of primitive variables (u, v, w, ρ, T , p) as well as for vis-
cosity µ, second viscosity µB and heat conductivity ϑ. The additional second
viscosity, also known as volume viscosity, is only included to validate the solver
with results from Mack [63] who uses µB for hypersonic flow regimes. Since
moderate Mach numbers are considered within this work, the second viscosity
is set to zero.

The first assumption of LST is the given baseflow to be a steady solution of
the Navier-Stokes equations. Therewith, all terms which contain only baseflow
quantities vanish. The second step is to consider the baseflow to be parallel
which neglects the widening of a boundary/mixing layer. Due to the continuity
equation, the normal velocity component v0 of the baseflow is zero:

v0(y) = 0,

Φ0 = Φ0(y), Φ0 ∈ (u0, w0, ρ0, T0, p0) (3.67)

So linear stability theory is a local theory where each x-position is considered
separately. Assuming the disturbances to be small, products of the disturbances
can be neglected:

Φ′ � 1 ⇒ Φ′2 ≈ 0, Φ′ ∈
`
u′, v′, w′, ρ′, T ′, p′

´
(3.68)

Accordingly, the equation of state (2.21) can be linearized. This allows to ex-
press the pressure disturbances by the fluctuations of density and temperature:

p′

p0
=
ρ′

ρ0
· T
′

T0
(3.69)
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With viscosity being a function of temperature, its y-derivative can be ex-
pressed by the spatial derivative of the temperature. Here, this is shown ex-
emplarily for the y-direction:

∂µ

∂y
=

∂µ0

∂y
+

∂

∂y

 
dµ

dT

˛̨̨̨
T0

· T ′
!

=
∂µ0

∂y
+

∂

∂y

 
dµ

dT

˛̨̨̨
T0

!
· T ′ + dµ

dT

˛̨̨̨
T0

· ∂T
′

∂y
, (3.70)

Substituting
∂

∂y
=
∂T

∂y
· ∂
∂T

=

„
∂T0

∂y
+
∂T ′

∂y

«
· ∂
∂T

(3.71)

to equation (3.70) and disregarding products of the fluctuations yields

∂µ

∂y
=

dµ

dT

˛̨̨̨
T0

· ∂T0

∂y
+

d2µ

dT 2

˛̨̨̨
T0

· ∂T0

∂y
· T ′ + dµ

dT

˛̨̨̨
T0

· ∂T
′

∂y
, (3.72)

where derivatives with respect to temperature are taken from the Sutherland
law of equation (2.24). The secondary viscosity µB is taken proportional to the
dynamic viscosity µ. Due to a constant Prandtl number, the heat conductivity
ϑ is proportional to µ as well.

Fluctuations are considered in wave form

Φ′(x, y, z, t) = Φ̂(y) · ei·(αx+γz−ωt), (3.73)

where α and γ are the wavenumbers in streamwise and spanwise direction, re-
spectively, and ω denotes the frequency of the particular wave. The complex
amplitude Φ̂(y) defines the physical amplitude and phase distribution along the
normal direction: the amplitude is the absolute value |Φ̂(y)| and its argument
arg{Φ̂(y)} corresponds to the phase distribution of fluctuation Φ′. Assuming
periodicity in z-direction, the spanwise wavenumber is real, preventing distur-
bances to grow in spanwise direction. Depending on whether we allow the
frequency ω or the streamwise wavenumber α to be complex, it is called tem-
poral or spatial problem, respectively. In the temporal case, the amplitude of
a disturbance may grow or decay in time with ωi being the temporal ampli-
fication rate. However for most flow conditions, the spatial problem is more
realistic since disturbances are convected downstream. Here, amplitudes grow
in space with the spatial amplification rate being −αi. Due to equation (3.73),
negative values of αi correspond to amplification while positive values denote
damping.
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Unlike the incompressible case, where the continuity equation can be used to
reduce the number of equations to two (Orr-Sommerfeld and Squire equations),
all five equations need to be solved: the continuity equation, three momentum
equations and the energy equation. With the ansatz of equation (3.73), time
and spatial derivatives in streamwise and spanwise direction are given analyti-
cally by

∂Φ′

∂t
= −i · ω · Φ′ (3.74)

∂Φ′

∂x
= i · α · Φ′ (3.75)

∂Φ′

∂z
= i · γ · Φ′ (3.76)

and accordingly for the second derivatives. Thus, only derivatives in y-direction
need to be discretized.

3.4.2 Boundary Conditions

With first and second y-derivatives of temperature and the three velocity com-
ponents, it is obvious that these quantities require two boundary conditions,
respectively. To determine whether the density requires an additional boundary
condition, we take a look at the continuity equation:

∂ρ′

∂t
+ ρ0

„
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

«
+

„
∂ρ0

∂y

«
v′ + u0

∂ρ′

∂x
+ w0

∂ρ′

∂z
= 0 (3.77)

With the wave ansatz and the corresponding derivatives (3.74) - (3.76), the
continuity equation can be solved for the complex amplitude of the density:

ρ̂ =
1

α · u0 + γ · w0 − ω
·
»
i

„
∂ρ0

∂y

«
· v̂ + iρ0 ·

∂v̂

∂y
− ρ0 · (α · u0 + γ · w0)

–
(3.78)

Since ρ̂ can be expressed analytically without solving a differential equation,
no further boundary condition for the density is required. This is consistent
with the transformation to an eighth-order system used for a shooting method
[63].

At the wall, the boundary condition of the velocity components is the no-
slip condition. Due to relatively high frequencies of the instability waves, it
is assumed that the temperature at the wall does not follow the temperature
fluctuations of the flow. Thus, its disturbance is set to zero, too, and the
boundary conditions at the wall are:

ûw = 0, v̂w = 0, ŵw = 0, T̂w = 0 (3.79)
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At the freestream, the boundary condition is based on the solution for a uniform
mean flow where amplitudes decay along the normal direction. Accordingly,
the disturbances vanish far away and we may state at the freestream boundary

û(y) = 0, v̂(y) = 0, ŵ(y) = 0, T̂ (y) = 0, y → ±∞, (3.80)

where the coordinates y = +∞ and y = −∞ correspond to an upper and
lower free stream, respectively. Since boundary conditions at infinity can not
be prescribed numerically at infinity, the complex amplitudes are set to zero
directly at the free stream boundary. Of course, this requires the spatial extent
of the domain to be large enough to avoid wrong results.

3.4.3 Matrix Solver

Two fundamental ways exist to solve the stability equations numerically: i) a
shooting method and ii) a matrix solver. The shooting method is very fast
and can be applied directly to temporal and spatial problems. However, such
a solver requires initial values whose guessing can be difficult, especially for
higher Mach numbers. Despite being more costly in terms of computational
resources, a matrix solver was developed since it provides the full spectrum
containing all modes. Furthermore, it can be applied directly to boundary lay-
ers and mixing layers.

While the stability equations are linear with respect to ω, the square of the
streamwise wavenumber α occurs due to the second derivatives in x-direction.
Thus, only the temporal problem is a linear eigenvalue problem which can be
written as

A0 · q̂ + A1 ·
∂q̂

∂y
+ A2 ·

∂2q̂

∂y2
= ω ·B · q̂ (3.81)

with the complex frequency ω ∈ C being the eigenvalue. The eigenvector q̂
contains the complex amplitude of the different flow quantities at each grid
point yj :

q̂ =
“
ρ̂j , ûj , v̂j , ŵj , T̂j

”T
, q̂ ∈ C, j ∈ [1, N ] (3.82)

The coefficient matrices A0, A1 and A2 contain the prefactors of the complex
amplitudes and their first and second y-derivatives, respectively. Prefactors of
the eigenvalue ω are included in matrix B. The size of these matrices is five
times the number of grid points in normal direction since five equations are
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solved. Accordingly, the matrix structure is made of 5x5 submatrices, e.g.:

A0 =

266664
A011 A012 A013 A014 A015

A021 A022 A023 A024 A025

A031 A032 A033 A034 A035

A041 A042 A043 A044 A045

A051 A052 A053 A054 A055

377775 (3.83)

With the coefficients affecting only the current grid point, each of the submatrix
A0k,l is a diagonal matrix containing the coefficients at the respective grid
points:

A0k,l =

2666664
a0kl(y2) 0 · · · 0 0

0 a0kl(y3) · · · 0 0
...

...
. . .

...
...

0 0 0 a0kl(yN−2) 0
0 0 0 0 a0kl(yN−1)

3777775 (3.84)

With the boundary conditions prescribing the eigenvector to zero at the bound-
aries at y1 and yN , the stability equations do not need to be solved there. Thus,
the boundaries are not included in the equation system. Accordingly, the index
in normal direction ranges from 2 to N − 1.

k equation

1 continuity eq.

2 x-momentum eq.

3 y-momentum eq.

4 z-momentum eq.

5 energy eq.

l a0j,k, bj,k a1j,k a2j,k

1 ρ̂ ∂ρ̂
∂y

∂2ρ̂
∂y2

2 û ∂û
∂y

∂2û
∂y2

3 v̂ ∂v̂
∂y

∂2v̂
∂y2

4 ŵ ∂ŵ
∂y

∂2ŵ
∂y2

5 T̂ ∂T̂
∂y

∂2T̂
∂y2

Table 3.3: Notation for the indices of the coefficient submatrices: the first index
k corresponds to the equation (left) and the second index l represents
the particular quantity (right).

The above structure is the same for the coefficient matrices of the first (A1)
and second y-derivatives (A2) and for matrix B. With this notation, the first
index k corresponds to the particular equation and the second index l denotes
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the individual quantities as provided by table 3.3. For example, a12,3 is the
prefactor of ∂v/∂y in the x-momentum equation. The complete set of the ma-
trix coefficients a0k,l, a1k,l, a2k,l and bk,l is listed in appendix B.

The y-derivatives of the complex amplitudes are discretized by explicit finite
differences. Since this is a linear combination of the neighboring grid points,
derivatives in normal direction can be expressed as matrix operation:

∂q̂

∂y
= D1 · q̂,

∂2q̂

∂y2
= D2 · q̂, (3.85)

with D1 and D2 being the derivative matrices of the first and second deriva-
tives in normal direction, respectively.

Since the derivatives of a specific quantity depend only on its values and not
on those of other variables, only the main diagonals of D1 and D2 are filled
with submatrices:

D1 =

266664
D1 0 0 0 0
0 D1bc 0 0 0
0 0 D1bc 0 0
0 0 0 D1bc 0
0 0 0 0 D1bc

377775 (3.86)

D2 =

266664
D2 0 0 0 0
0 D2bc 0 0 0
0 0 D2bc 0 0
0 0 0 D2bc 0
0 0 0 0 D2bc

377775 (3.87)

The submatrices D1 and D2 contain the coefficients of the finite differences
used for discretization. The subscript bc denotes that the boundary conditions
are included in the stencils near the boundaries. Thus, velocity and temper-
ature fluctuations are discretized using D1bc and D2bc. Having no boundary
condition for the density, the corresponding derivatives are computed using
one-sided and biased finite differences near the boundaries.
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Within the domain, standard explicit finite differences of 4th order are used for
all quantities:

∂Φ̂

∂y

˛̨̨̨
˛
j

=
Φ̂j−2 − 8 · Φ̂j−1 + 8 · Φ̂j+1 − Φ̂j+2

12 ·∆y (3.88)

∂2Φ̂

∂y2

˛̨̨̨
˛
j

=
−Φ̂j−2 + 16 · Φ̂j−1 − 30 · Φ̂j + 16 · Φ̂j+1 − Φ̂j+2

12 ·∆y2
(3.89)

j ∈ [4, N − 3]

Thus, the coefficients from the lower to the upper tertiary diagonal of the
submatrices are allocated by the finite differences given above. For disturbances
requiring a boundary condition, the above stencils can be applied one grid point
further using Φ̂1 = Φ̂N = 0. At the grid points next to the boundaries, 4th-
order biased FDs are used for velocity and temperature fluctuations:

∂Φ̂

∂y

˛̨̨̨
˛
2

=
−10 · Φ̂2 + 18 · Φ̂3 − 6 · Φ̂4 + 1 · Φ̂5

12 ·∆y (3.90)

∂2Φ̂

∂y2

˛̨̨̨
˛
2

=
−20 · Φ̂2 + 6 · Φ̂3 + 4 · Φ̂4 − 1 · Φ̂5

12 ·∆y2
(3.91)

Φ̂ ∈
h
û, v̂, ŵ, T̂

i
The stencils are given here at grid point j = 2. For the upper boundary,
this corresponds to biased FDs with the opposite orientation, ranging from
j = (N − 4) to j = (N − 1). In case of the density, no boundary condition is
applied and the grid points j = 1 and j = N are not included in the stencil.
The used one-sided finite differences are

∂Φ̂

∂y

˛̨̨̨
˛
2

=
−25 · ρ̂2 + 48 · ρ̂3 − 36 · ρ̂4 + 16 · ρ̂5 − 3 · ρ̂6

12 ·∆y (3.92)

∂Φ̂

∂y

˛̨̨̨
˛
3

=
−3 · ρ̂2 − 10 · ρ̂3 + 18 · ρ̂4 − 6 · ρ̂5 + 1 · ρ̂6

12 ·∆y (3.93)

and

∂2Φ̂

∂y2

˛̨̨̨
˛
2

=
35 · ρ̂2 − 104 · ρ̂3 + 114 · ρ̂4 − 56 · ρ̂5 + 11 · ρ̂6

12 ·∆y2
(3.94)

∂2Φ̂

∂y2

˛̨̨̨
˛
3

=
11 · ρ̂2 − 20 · ρ̂3 + 6 · ρ̂4 + 4 · ρ̂5 − 1 · ρ̂6

12 ·∆y (3.95)
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at the lower boundary for the first and second derivatives, respectively. The
stencils of the upper boundary are of analogous shape in opposite direction.

With the derivatives in normal direction being implemented by the matrices
D1 and D2, equation (3.81) can be recast to

A = A0 + A1D1 + A2D2 (3.96)

A · q̂ = ω ·B · q̂, (3.97)

being a generalized eigenvalue problem with eigenvalue ω and eigenvector q̂.
This is solved using the QZ algorithm provided by the LAPACK package [76].

3.4.4 Wielandt Iteration

The matrix solver described above is capable of solving the temporal prob-
lem with ω ∈ C ∧ α ∈ R. However, most of the relevant flow problems are
of convective nature where disturbances grow or decay in space while being
transported by the local flow speed (ω ∈ R∧α ∈ C). In order to obtain spatial
amplification rates, αi is iterated such that the temporal amplification rate of
one selected eigenvalue vanishes. Each iteration step causes a slightly modified
matrix A due to the variation of αi. The resulting eigenvalue is obtained using
the Wielandt iteration [107] which works as follows:

First, the generalized eigenvalue problem (3.97) is changed to an ordinary eigen-
value problem by M = A · B−1. Let ωI be the known eigenvalue of matrix
MI and ωII be the unknown eigenvalue of matrix MII . Subtracting both ma-
trices yields M∆ = [MII −MI ]. Since we assume MII to be only a marginal
variation of the original MI , one of its eigenvalues is very small:

EV (M∆) ≈ ωII − ωI � 1 (3.98)

Hence, the corresponding eigenvalue of the inverse matrix is

EV
`
M−1

∆

´
= Λ ≈ 1

ωII − ωI
� 1. (3.99)

Since Λ is the largest eigenvalue of M−1
∆ , applying the inverse matrix to any

arbitrary vector ~Φ causes the strongest amplification of the eigenvector which
corresponds to the eigenvalue Λ. This assumes that ~Φ is a linear combination
of all eigenvectors of matrix M−1

∆ :

~Φ =
X
j

cj · ~evj,M−1
∆
, cj 6= 0 (3.100)
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In principle, some prefactors cj may be zero. However in a numerical imple-
mentation, ~Φ will contain all eigenvalues due to round-off errors. For example,
a simple vector like ~Φ = (1, 1, .., 1)T works fine within this algorithm. After
enough iterations, the strongest amplified eigenvector prevails:

M−1
∆ · ~Φ = Λ · ~Φ (3.101)

The iteration is aborted when all components of
h
M−1

∆ · ~Φ
i

and ~Φ differ by the

same factor Λ with an accuracy of ε = 10−10. Hence, the new eigenvalue is

ωII =
1− Λ · ωI

Λ
. (3.102)

Being able to compute the eigenvalue of a slightly modified matrix, the Newton
iteration is used to get from the temporal to the spatial solution. The neces-
sary gradient is obtained by a small variation of the spatial amplification rate.
Depending on ∂ωi/∂αi, large changes of αi may occur. However, the Wielandt
iteration requires variations of the matrix to be small. Thus, the modification
of the spatial amplification rate is limited to ∆αi,max as illustrated in figure
3.12. Unfortunately, the value of ∆αi,max cannot be determined directly. Thus,
one has to rely on empirical values to guarantee convergence without requiring
too many iterations.

α i

ωi

0
∆α i,max 0

spatial

temporal

Figure 3.12: Illustration of the Newton iteration, transforming the temporal to
the spatial solution. The colors denote different iteration steps.
Since the Wielandt iteration allows only small variations of the
matrix, the step size is limited to ∆αi,max.
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Since the type of matrix variation is not fixed, this procedure can also be used
for changing other parameters. So it is possible to cover a range of streamwise
wavenumbers αr and x-positions to compute a stability diagram. Since the
the value of ωr is part of the result, the frequency range of a stability diagram
is determined indirectly by the range of streamwise wavenumbers. Again, the
Wielandt iteration requires the variation of x and αr to be small.

3.5 Initial Conditions

The first step of a numerical investigation according to figure 3.1 is the defini-
tion of the initial condition including the mesh. Since this may differ strongly
for various flow problems and configurations, separate programs specialized on
the respective problem are used.

3.5.1 Grid Generation

The grid generation is based on a common module containing a variety of grid
transformations. The module is included in the different tools for the initial
conditions and in the DNS-code. This provides the same grid transformations
for all programs and allows the DNS-code to perform simulations with analyt-
ical metric coefficients, recognizing the particular grid transformation. Within
this work, the following grid transformations are used:

To cover the relevant part of the acoustic farfield efficiently, the mesh is stretched
continuously in normal direction:

y = a3 · (η − η0)3 + (η − η0) (3.103)

The 3rd-order polynomial was chosen since it allows stretching in both positive
and negative direction. The strength of the grid coarsening in normal direction
is defined by the parameter a3. The value of η0 specifies the center of the
stretching being the location with the finest resolution in normal direction.

In streamwise direction, the mesh is typically equidistant in the region of in-
terest. However, the damping zone for the subsonic outflow requires the grid
to become coarser (section 3.3.3.7). In the damping zone, the grid is stretched
continuously in streamwise direction according to Colonius et al. [24]:
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sx =
ξmax ·

“
1 + ∆xmax

∆ξ

”
− (xmax − x0)

∆xmax
∆ξ

(3.104)

σx =
ln
“

∆xmax
∆ξ

· 1
δx

”
sx − xp

(3.105)

x = x0 + ξ +
∆xmax

∆ξ
· 1

σx
· ln
“
eσx(ξ−st) + 1

”
(3.106)

The transformation is defined by four parameters. The coarsening of the grid
begins at xp with the initial stretching given by δx = ∆x(xp)/∆ξ−1. The final
x-coordinate is xmax, having the step size ratio ∆xmax/∆ξ, there.

The mesh used to investigate the numerical properties on non-uniform grids is
stretched and coarsened in streamwise direction almost instantaneously. This
is done by a hyperbolic tangent distribution of the metric coefficient xξ being

x = x0 +
1 + rx

2
· ξ +

rx − 1

2 · bx
ln [cosh (bx · (ξ − ξ1))]

− rx − 1

2 · bx
ln [cosh (−bx · ξ1)] (3.107)

for the coarsening of the mesh. At the beginning, the regular stepsize is used
(∆x = ∆ξ). Past the position of coarsening ξ1, the resolution is decreased by
the factor rx = ∆x(ξ>ξ1)/∆x(ξ<ξ1). The additional parameter bx controls how
rapidly the resolution changes. Small values of bx provide a smooth transition
from fine to coarse spacing and large values may cause an almost unsteady
change of the resolution in x-direction. The subsequent refinement is done ac-
cordingly.

Of course, the above transformations are rather simple. Thus, one has to rely
on grid-generation software to obtain the mesh for more complex geometries
like the airfoil shown in figure 3.4. For further details, the reader is referred to
the work of Schneider [88].

3.5.2 Flow Field

The flow condition is the actual definition of the problem to be solved by
DNS. Since boundary conditions like the inflow or the characteristic freestream
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are based on the initial condition, appropriate initial flow quantities are re-
quired. Therefore, the solution of the boundary-layer equations is an appropri-
ate method.

Blasius Boundary Layer

For the boundary layer (BL) along a flat plate, the self-similar solution of the
BL-equations is used. The module PROFKOM [19] provides all flow quanti-
ties of a compressible Blasius boundary layer as a function of the wall-normal
similarity coordinate

η = y ·
r
Re

x
, (3.108)

where x = 0 denotes the streamwise coordinate of the trailing edge of the flat
plate. The self-similar solution is then mapped to the chosen mesh using a
quadratic interpolation.

Self-similar Mixing Layer

In case of a mixing layer without any wall, the initial condition is made of
two self-similar boundary layers with their free-stream velocities, being the two
different flow speeds above and below the mixing layer, see White [106]. The
two BLs are attached to each other at their former walls. The velocity and
the temperature of this virtual wall, forming the center of the mixing layer
at y = 0, are adjusted such that the wall-normal derivatives of the streamwise
velocity and of the temperature are equal. As the flow quantities and thus their
derivatives are given along the similarity coordinate, the η-derivatives need to
be rescaled: r

u∞,I
µ∞,I

· ∂u
∂η

˛̨̨̨
I,y=0

=

r
u∞,II
µ∞,II

· ∂u
∂η

˛̨̨̨
II,y=0

(3.109)r
u∞,I
µ∞,I

· ∂T
∂η

˛̨̨̨
I,y=0

=

r
u∞,II
µ∞,II

· ∂T
∂η

˛̨̨̨
II,y=0

(3.110)

The upper and lower streams are marked with I and II , respectively and the
subscript ∞ denotes the corresponding free-stream values. In a physical sense,
the above condition means that no shear stress and heat flux is transferred to
the virtual wall. The quantities at y = 0 are determined by a Newton iteration.
Finally, the two self-similar BL-solutions are interpolated on the grid, taking
the different scaling of the two boundary layers into account.
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Mixing Layer with Splitter Plate

If a splitter plate is included in the simulation, the two boundary layers above
and below the flat plate are taken from the similarity solution. From the trailing
edge onwards, the x-derivatives from the boundary-layer equations

∂ρ

∂x
= −

v · ∂ρ
∂y

u
−

2µ ·
“
∂ρ
∂y

”2

ρ2u · cp (κ− 1) ·Re · Pr ·Ma2
∞

+
µ · ∂

2ρ
∂y2

ρu · cp (κ− 1) ·Re · Pr ·Ma2
∞
−
ρ · µ ·

“
∂u
∂y

”2

u · cp ·Re
(3.111)

∂u

∂x
=

v · ∂u
∂y

u
−

∂µ
∂y

Re
·
∂u
∂y

ρu
− µ

Re
·
∂2u
∂y2

ρu
(3.112)

are integrated in downstream direction. The normal velocity v is obtained by
integrating

∂v

∂y
=

∂ρ
∂x
· u+ ∂ρ

∂y
· v

ρ
(3.113)

in both directions, starting at the center v(y = 0) = 0. For boundary lay-
ers with a non-zero sweep angle (w∞,I 6= 0 or w∞,II 6= 0), the self-similar
streamwise-velocity profile is rotated. Due to the 3-d boundary layers, the in-
tegration in x-direction has to consider the spanwise velocity component now.
The extension of equations (3.111)-(3.113) for the 3-d BL-solution can be found
in [48].

The numerical integration is implemented in a rather simple way. In the down-
stream direction, the 1st-order Adams predictor-corrector method is used:

Φ∗j+1 = Φj + ∆x · ∂Φ

∂x

˛̨̨̨
j

(3.114)

Φj+1 = Φj + ∆x · ∂Φ

∂x

˛̨̨̨∗
j+1

(3.115)

The integration of the normal-velocity component is done by the method of
Heun:

v∗k+1 = vk + ∆y · ∂v
∂y

˛̨̨̨
k

(3.116)

vk+1 = vk +
∆y

2
·

 
∂v

∂y

˛̨̨̨
k

+
∂v

∂y

˛̨̨̨∗
k+1

!
(3.117)



66 3 Numerical Method

Here, j and k denote the indices in streamwise and normal direction, re-
spectively. In order to stay within the stability limit, integration of the BL-
equations is done on an equidistant grid. While the y-resolution in the middle
of the domain appeared to be sufficiently fine, the spacing in streamwise direc-
tion typically needs to be decreased.

As the second x-derivatives are not negligible near the trailing edge, it is some-
how problematic to use the BL-equations, here. Accordingly, the discontinuity
of the geometry causes a jump in the wall-normal velocity. In order to provide
a smooth distribution, necessary for the free-stream boundary condition, the
normal velocity of the previous x-position is used and then filtered in normal
direction:

vj,k =

„
1

Re ·∆x

«
· vj−1,k+1 + vj−1,k−1

2
+

„
1− 1

Re ·∆x

«
· vj−1,k (3.118)

The 1st-order filter actually averages the neighboring values, modeling the suc-
cessive smoothing of the v-profile. Since the strength of the filtering should
be effected neither by the streamwise resolution nor by the reference length L̃,
the averaging is weighted with the factor 1/Re∆x. Of course, this does not
fulfill the continuity equation. However, the flow field showed to be sufficient
as initial condition. Note that equation (3.118) is applied after the complete
integration of the BL-equations. Thus, all other flow quantities are not affected
by the smoothing. Since the normal velocity is not used in LST, its results are
not distorted by the modification of the normal velocity component.

Figure 3.13 shows the difference between the original v-distribution (left) and
smoothing (right). The original solution of the BL-equation generates an in-
stantaneous increase of the wall-normal velocity directly behind the splitter
plate. With values ranging from v = −0.77 to v = −0.9, a rather unphysical
flow field emerges. Yet, a rather reasonable distribution is achieved by applying
equation (3.118) and the initial condition is directly applicable to the character-
istic free-stream boundary condition whose linearization requires a valid mean
flow.
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Figure 3.13: Comparison of the wall-normal velocity component for the mixing
layer past a splitter plate of case 5A:
a) original solution of the BL-equations,
b) additional smoothing of v according to equation (3.118).

3.6 Pre- and Postprocessing

The DNS code is run via a shell script which gathers all information required
for the simulation, compiles the code with the respective array sizes and sub-
mits the job to the queuing system. With all input files and the source code
being saved, the complete simulation is fully reproducible. Additional tools
complete the work flow like time-step estimation or combining eigenfunctions
from LST for disturbance generation. The latter also normalizes the amplitude
with respect to the maximum of |û| and shifts the phase such that θu = 0 at
the location where the amplitude of u has its maximum. Thus, the phase shift
is given relatively to the maximum of |û|.

With the DNS producing a huge amount of data, postprocessing is vital for
data analysis. For this purpose the EAS3 toolset [75] is used which provides
a variety of data operations via the command-line interface and allows post-
processing to be triggered by a bunch of shell scripts. Thus, postprocessing of
multiple files can be done in parallel, simply by adding a “&” to respective call.
Examples of the implemented functionality are double Fourier transformation
in time and spanwise direction, the Λ2 vortex criterion of Jeong and Hussain
[46] and the dilatation ∇u to visualize the acoustic field.
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4 Fundamentals of Mixing-Layer Noise

The pure mixing layer, also denoted as free shear layer is a generic and rather
simple configuration for jet-noise investigations. Unlike the mixing layer behind
a splitter plate (chapter 5), the inflow is made of an S-shaped velocity profile
here. Having no walls in the domain, the origin of the two different streams
is not included in the simulation. However, the fundamental sound-generation
mechanisms due to vortex interaction can be investigated with this setup.

4.1 Flow Parameters

The flow configuration has been closely matched to the case of Colonius et al.
[25]. This allows to verify the numerical scheme for aeroacoustic simulations.
The Mach numbers of the upper and lower stream are MaI = 0.5 and MaII =
0.25, respectively. As both free stream temperatures are equal (T̃I = T̃II =
280K), the ratio of the streamwise velocities is uI/uII = 2. The Reynolds
number Re = ρIuIδΩ(x0)/µ = 500 is based on the vorticity thickness at the
inflow which is used to normalize length scales:

δΩ(x0) =

„
∆U

|∂u/∂y|max

«
x=x0

, (4.1)

with ∆U = uI−uII being the difference between the two free-stream velocities.
The origin of the streamwise coordinate is the singularity of the Blasius mixing
layer at its beginning. Here, the initial coordinate x0 = 30 is chosen such that
the vorticity thickness of the boundary layer solution is one at the inflow. By
that length scales are made dimensionless with δΩ(x0). The solution of the
boundary-layer equations provides the Blasius mixing layer, shown in figure
4.1 for the inflow x0 = 30.

A cartesian grid is used with 2500x850 grid points in x- and y-direction, respec-
tively. In streamwise direction, the grid is uniform with spacing ∆x = 0.157
up to the sponge region where the grid is highly stretched. In normal direc-
tion, the grid is continuously stretched with the smallest stepsize ∆y = 0.15 in
the middle of the mixing layer and the largest spacing ∆y = 1.06 at the upper
and lower boundaries. The grid stretching and the domain decomposition for
parallelization are illustrated in figure 4.1.
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Figure 4.1: Initial condition at the inflow x0 = 30, obtained from the boundary-
layer equations.
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Figure 4.2: Grid in the x-y-plane showing every 25th gridline. The domain
decomposition is indicated by black and grey lines.
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4.2 Linear Stability Analysis

Linear stability analysis is based on the solution of the boundary-layer equa-
tions, here. This is done on an equidistant version of the grid with 301
points in y-direction and a spacing of ∆y = 0.15, ranging from y = −22.5 to
y = 22.5. Figure 4.2 shows the temporal spectrum at the inflow for a stream-
wise wave number αr = 0.1. One amplified eigenvalue exists with ωr = 0.075,
ωi = 0.019, being the Kelvin-Helmholtz mode of the mixing layer. Its phase
speed cph = ωr/αr = 0.75 is the meanvalue of the two freestream velocities.
Moreover, two continuous spectra exist with phase speeds of cph = 1.0 and
cph = 0.5. They correspond to freestream disturbances of the upper and lower
stream, respectively.
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Figure 4.3: Temporal spectrum of the mixing layer for streamwise wave number
αr = 0.1 at x0 = 30.

The spatial amplification rates of the most amplified eigenvalue are given in
figure 4.4 a) as a function of the angular frequency ω = 2π · f . The fun-
damental frequency ω0 = 0.6293 is defined by the highest amplification rate.
Downstream of the inflow, spatial amplification decreases and its maximum
moves towards lower frequencies. A comparison with the inviscid instability
solution reveals that the growth rates differ by up to 10%. Figure 4.4 b) shows
that the amplification of oblique waves decreases for larger values of γ while
its maximum stays at the same frequency.
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Figure 4.4: a) Stability diagram of the mixing layer for 2-d disturbances at
various streamwise positions, including inviscid theory.
b) Spatial Amplification rates at the inflow x0 = 30 in dependence
of the spanwise wave number; γ = 0.0 to γ = 0.8 with ∆γ = 0.2.

The eigenfunctions for the two-dimensional Kelvin-Helmholtz mode and an
oblique wave with a spanwise wave number γ = 0.8 are shown in figures 4.5
and 4.6, respectively. For comparison, the amplitudes of both eigenfunctions
are scaled such that the maximum amplitude of the streamwise velocity is one.
The maximum of |û| surrounded by two local extrema and with phase jumps
between them is the characteristic shape of the eigenfunction in a mixing layer.
Being a two-dimensional disturbance, the eigenfunction for γ = 0 does not
have fluctuations of the spanwise velocity. The amplitudes of the other flow
quantities possess only one maximum which is located in the center of the
mixing layer. With γ = 0.8 and αr = 0.83, the oblique instability has a wave
angle Ψ ≈ 45◦. The profile of |û| is narrower in the three-dimensional case
and the v-amplitude is shifted to the spanwise velocity. The amplitudes of the
thermodynamic quantities ρ, T and p are reduced by a factor of more than two
compared to the two-dimensional eigenfunction.
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Figure 4.5: Amplitude (solid line) and phase distribution (dashed line) of the
two-dimensional eigenfunction with fundamental frequency ω0 =
0.6293.
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Figure 4.6: Eigenfunction of an oblique wave with frequency ω0 = 0.6293 and
spanwise wave number γ = 0.8 (lines according to figure 4.5).
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4.3 Two-Dimensional Simulation

To introduce defined disturbances, the flow is forced at the subsonic inflow
with eigenfunctions from linear stability theory. The eigenfunctions of the
fundamental frequency ω0 = 0.6293 and its first three subharmonics are used
with the maximum of |û| = 0.001 for all disturbances. In simulation 4A,
the phase shift is ∆Θ = −0.028 for (1/2, 0), ∆Θ = 0.141 for (1/4, 0) and
∆Θ = 0.391 for (1/8, 0) as done by Colonius et al. [25]. However it is not clear
how the phase shift is specified by them since the phase distribution varies along
the normal direction (see figures 4.5 and 4.6). Here, the phase is defined with
respect to the maximum of |û| such that Θ = 0 at the location of |û|max in case
of no phase shift. To investigate the influence of the phase, a second simulation
(case 4B) with an alternative phase shift ∆Θ = 3.141 of mode (1/4, 0) has
been performed. At the upper and lower boundaries, a characteristic boundary
condition with a damping zone is used. The buffer zone in front of the subsonic
outflow covers 400 points in x-direction with spatial filtering.

case 4A, 4B

number of grid points (Nx ×Ny) 2500× 850
∆x 0.157 - 4.761
∆y 0.150 - 1.062
time step ∆t 0.0133
computed time steps 57000
fundamental frequency ω0 0.6293
periods of ω0 for analysis 8

subsonic inflow: |û|max ∆Θ

(1, 0) 0.001 0.000
(1/2, 0) 0.001 −0.028
(1/4, 0) 0.001 0.141, 3.141
(1/8, 0) 0.001 0.391

characteristic free stream:

damping parameter d 0.01
grid points in damping zone 40

subsonic outflow:

beginning of filtering (x-position) 359.71
filtering sequence (time steps) 5
ramping of filter (grid points) 5

Table 4.1: Parameters for the two-dimensional simulations 4A and 4B: pure
mixing layer with MaI = 0.5, MaII = 0.25 and Re = 500.
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The time step is ∆t = 0.0133 which corresponds to 750 time steps per period
of the fundamental frequency. An overall number of 57000 time steps has been
computed of which 80 time steps during eight fundamental periods are used for
data analysis. The parameters of the simulation are summarized in table 4.1.

The spanwise vorticity Ωz is shown in figure 4.7 after 76 periods of the fun-
damental frequency for case 4A. The solution is in good agreement with the
result of Colonius et al. [25]. Yet the roll-up of Kelvin-Helmholtz vortices and
the subsequent pairing occurs a bit earlier, here. Unlike the reference solution
where forcing is done with eigenfunctions from the inviscid Rayleigh equations,
eigenfunctions from viscous linear stability theory are used here to excite the
flow. As shown in [9], the viscous and inviscid eigenfunctions differ by up to
15%. Thus, the more acurate viscous eigenfunctions seem to be slightly more
efficient for disturbance generation. The last merging which ejects vortices with
frequency f = (ω0/4)/(2π) is in an earlier stage compared to Colonius et al.
This is due to the unclear definition of the phase shift mentioned above. Again,
the final vortex at x ≈ 290 looks the same as in the reference solution.
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Figure 4.7: Snapshot of the spanwise vorticity Ωz after 76 fundamental periods
for case 4A with ∆Θ(ω0/4) = 0.141. Contour levels range from
−0.26 to 0.02 with an increment of 0.04. The reference solution of
Colonius et al. [25] is shown above.

The time-averaged streamwise velocity is computed as

u =
1

j2 − j1
·
j2X
j=j1

u(tj), (4.2)
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where all 6000 time steps within the analysis time frame [(j2 − j1) · ∆t] =
2π/(ω0/8) are used. As shown in figure 4.8, the thickness of the mixing layer
strongly increases at the positions of vortex pairing x = 130 and x = 240.
Moreover, good agreement with the reference solution can be observed.
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Figure 4.8: Mean streamwise velocity contours from case 4A with the reference
solution [25] of the corresponding domain above. Contour levels
range from 0.52 to 0.98.

The amplitudes of v are shown in figure 4.9 a) with their maximum taken
along the normal direction. The velocity component in normal direction is
chosen since its streamwise development is mainly associated with vorticity.
The modes are denoted as (h, k), with h and k being the multiple of the fun-
damental frequency ω0 and the spanwise wavenumber γ0, respectively. The
corresponding amplification rates

αi = − ∂

∂x

n
ln(|Φ̂|max)

o
(4.3)

are compared with linear stability theory in figure 4.9 b). In the initial region
of the integration domain amplitudes grow exponentially. Despite αi being a
very sensitive value, the amplification rates correspond well to those from linear
stability theory. Further downstream, modes (1, 0), (1/2, 0), (1/4, 0) saturate
at positions x = 90, x = 130 and x = 240, respectively. These streamwise
locations correlate well with the positions where the respective vortices are
fully developed (see figure 4.7).

For case 4B with ∆Θ(ω0/4) = 3.141, the amplitudes of the normal velocity are
shown in figure 4.10 a). For comparison, the result for ∆Θ(ω0/4) = 0.141 is
included by dotted lines. In the initial part of the flow field, the amplitudes
grow independently of the phase shift.
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Figure 4.9: a) Maximum amplitudes of the normal velocity v along y-direction
for simulation 4A.
b) Corresponding amplification rates compared with LST (sym-
bols).
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Figure 4.10: a) Maximum amplitudes of the normal velocity v along y-direction
for simulation 4B (∆Θ(ω0/4) = 3.141). Dotted lines denote the
respective modes for ∆Θ(ω0/4) = 0.141 (case 4A).
b) Phase velocities cph of normal-velocity modes at y = 0.
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Yet the development of the second subharmonic differs from x ≈ 120 onwards.
There, its phase is adjusted to the one of the first subharmonic. This can be
seen in figure 4.10 b) showing the phase speed

cph =
ω

∂Θ/∂x
(4.4)

of the first two subharmonics at y = 0. From x = 100 onwards, the phase
speed decreases and then adapts to the one of the first subharmonic. During
this process, the amplitudes reduce before they grow again. Phase adjustment
is found for both cases, but for ∆Θ(ω0/4) = 3.141, the phase speed varies
more and subharmonic resonance of mode (1/4, 0) is achieved with a slightly
reduced amplitude compared to ∆Θ(ω0/4) = 0.141. Accordingly, its saturation
at x = 260 is further downstream and the phase shift between (1/8, 0) and the
maximum of (1/4, 0) differs. This provides faster resonance and increases the
amplitude of (1/8, 0) by a factor of almost four downstream of x ≥ 270.

The resulting difference of the vortical structures is shown in figure 4.11 for time
level t = 758.1. Apparently, the merged vortices look the same and only their
relative orientation differs. For phase shift ∆Θ(ω0/4) = 0.141, the angle be-
tween both vortex axes is smaller than the one observed for ∆Θ(ω0/4) = 3.141.
This is the only visible difference in the flow field between both cases. Note
that the actual alignment of the vortices is time dependent.
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Figure 4.11: Comparison of the spanwise vorticity Ωz at t = 758.1 for different
phase shifts of the second subharmonic:
a) case 4A (∆Θ(ω0/4) = 0.141), b) case 4B (∆Θ(ω0/4) = 3.141).
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The acoustic field is visualized by the dilatation being the divergence of the
velocity field ∇u. In the freestream, the steady solution is ∇u = 0. Since
vorticity and entropy fluctuations propagate with the flow speed and thus in
x-direction here, non-zero values of ∇u in the freestream represent the emitted
sound. Selected frequencies can be visualized by the real part of the Fourier-
transformed dilatation field. Beyond this, acoustic emission can be charac-
terized by their directivity which is defined as the angle of noise propagation
versus the streamwise direction:

tan(ϕ) =
dy

dx
(4.5)
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Figure 4.12: Real part of the Fourier-transformed dilatation field for frequency

ω0/2 with contour levels ranging from −8 · 10−7 to 8 · 10−7 (case
4B). In the middle, an instantaneous snapshot of the spanwise vor-
ticity is shown. The corresponding reference solution of Colonius
et al. [25] is shown on the right side.

Figure 4.12 shows the real part of the Fourier-transformed dilatation field of the
first subharmonic for case 4B. The main acoustic source is located at x ≈ 130
with a directivity of ϕ = −40◦ to +50◦. The emitted sound is enhanced by an
additional source at x ≈ 200, where the amplitude of the second subharmonic
exceeds mode (1/2, 0). Since the amplitudes do not differ that much up to the
second vortex pairing, the acoustic field of the first subharmonic is very similar
in case of ∆Θ(ω0/4) = 0.141. Despite the ambiguity in the phase shift defini-
tion, the result is in good agreement with the reference solution of Colonius et
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al., given on the right half of figure 4.12. Unlike their result, no artificial sound
due to the forcing at the inflow can be observed in the upper half of the domain.

In case 4A, sound with frequency ω0/4 is emitted mainly perpendicular to
the flow direction as shown in figure 4.13 a). This differs to [9, 25] where
the emitted sound with frequency ω0/4 is directed mainly downstream. This
result is achieved by the alternative phase shift of case 4B for which a stronger
noise generation can be observed. Sound with frequency ω0/4 is emitted from
x ≈ 240 in downstream direction (ϕ = −70◦ to +60◦) which corresponds to
the reference solution of Colonius et al. [25]. The acoustic waves propagating
in normal direction are only weakly affected by the different phase shift of the
second subharmonic.
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Figure 4.13: Emitted sound with frequency ω0/4, visualized by the real part
of the Fourier-transformed dilatation with contour levels ranging
from −2 · 10−6 to 2 · 10−6:
a) ∆Θ(ω0/4) = 0.141 (case 4A), b) ∆Θ(ω0/4) = 3.141 (case 4B).

The two-dimensional results show that a notable subharmonic of a merged
vortex causes the main acoustic emission of a mixing layer. With resonance
determining the growth of low-frequency disturbances, it is possible to reduce
or inhibit the emitted sound by a varied phase shift of the introduced particular
subharmonic. This confirms the conclusion of Wei and Freund [105] that vortex
pairing per se is not responsible for generating tonal noise. Since the acoustic
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emission strongly depends on phase and amplitudes, any statistical approach
may hardly capture the mechanisms of aeroacoustic sound generation correctly.

4.4 Three-Dimensional Simulation

Although two-dimensional disturbances are most amplified in the plane mixing
layer, three-dimensional effects play an important role in fluid dynamics since
turbulence is a three-dimensional phenomenon. The three-dimensional simula-
tion contains an additional 1% steady disturbance with a spanwise wave number
γ = 0.8. It is introduced at the inflow using the eigenfunction of mode (1, 1)
shown in figure 4.6. The high amplitude of the steady disturbance has been
chosen to allow two-dimensional unsteady disturbances to interact with mode
(0, 1), generating unsteady oblique waves. The spanwise direction is resolved
by five modes (de-aliased) which corresponds to 9 grid points in the symmetric
case. Except the additional steady disturbance, the boundary conditions are
the same as in section 4.3. The simulation parameters are summarized in table
4.2.

case 4C

number of grid points (Nx ×Ny ×Nz) 2500× 850× 9
∆x 0.157 - 4.761
∆y 0.150 - 1.062
∆z 0.491
number of spanwise modes 5
fund. spanwise wave number γ0 0.8
time step ∆t 0.00998
computed time steps 76000
fundamental frequency ω0 0.6293
periods of ω0 for analysis 8

subsonic inflow: |û|max ∆Θ

(1, 0) 0.001 0.000
(1/2, 0) 0.001 −0.028
(1/4, 0) 0.001 3.141
(1/8, 0) 0.001 0.391
(0, 1) 0.010 0.000

Table 4.2: Parameters for the three-dimensional simulation 4C of the mixing
layer with MaI = 0.5, MaII = 0.25, Re = 500. Quantities of the
free-stream and outflow boundaries are those from table 4.1.
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The spanwise vorticity Ωz is shown in figure 4.14. The initial region is similar
to the corresponding two-dimensional simulation: the mixing layer rolls up into
vortices and the first pairing takes place at x ≈ 120. Further downstream three-
dimensional effects increase and the vortical structures differ. The Kelvin-
Helmholtz vortices break up into small-scale structures for x > 150. Compared
to the two-dimensional simulations of section 4.3, large scales almost disappear.
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Figure 4.14: Snapshot of the spanwise vorticity Ωz at z = 0 after 76 fundametal
periods for case 4C. Contour levels −0.26 to 0.02 correspond to
those of figure 4.7.

A three-dimensional impression of the vortical structures is given by the Λ2-
criterion by Jeong and Hussain [46], shown in figure 4.15. In order to see all
structures completely, the iso-surfaces Λ2 = −0.005 are given along two span-
wise periods. In the initial region of the mixing layer, S-shaped streamwise
vortices are bended around the spanwise vortices. These are counter-rotating
vortices as shown in figure 4.16 for an exemplary cross-section at x = 137.4.

With increasing streamwise position, their intensity grows and a pairwise ap-
proach in spanwise direction is visible. Their shape is reminiscent of the Λ-
vortices known from boundary-layer transition, see e.g. Meyer [67]. Further-
more, Ω-shaped vortices can be found on top of the Λ-type vortices. The inter-
action of spanwise and streamwise vortices leads to a breakdown in small scale
structures. Despite the flow field is dominated by small vortices for x > 200,
accumulations with the wavelength of the second subharmonic are visible (see
also figure 4.14).



4.4 Three-Dimensional Simulation 83

Figure 4.15: Perspective view of the iso-surface Λ2 = −0.005 in the range of
two spanwise periods at t = 758.81.
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Figure 4.16: Streamwise vorticity Ωx and velocity field at streamwise position
x = 137.4 and time t = 758.81.

The spectral decomposition is given in figures 4.17 a) and b) for two- and three-
dimensional modes, respectively. For comparison, the maximum amplitudes of
the corresponding 2-d case 4B are plotted as dotted lines as well.
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Figure 4.17: Maximum amplitudes of the normal velocity along y-direction:
a) two-dimensional disturbances (h, 0) of case 4C compared with
2-d simulation 4B (dotted lines),
b) three-dimensional disturbances (h, 1) with γ0 = 0.8.
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Figure 4.18: a) Phase velocities of the first two subharmonics: 2-d and 3-d
disturbances, computed from the normal velocity at y = 0.
b) Spanwise and temporal higherharmonics of the normal velocity
component v, based on the maximum along y.
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Up to x ≈ 110, the two-dimensional disturbances grow as in the two-dimensional
case 4B and the saturation of the first subharmonic differs only slightly. The
excited steady mode (0, 1) slowly decays up to x = 100. However, its large
amplitude generates unsteady oblique modes (h, 1). From x = 100 onwards,
the non-linear generation of mode (0, 1) exceeds the initial disturbance. The
initial increase of disturbances (1, 1) and (1/2, 1) ends where the first subhar-
monic (1/2, 0) saturates. Figure 4.18 a) shows the adaptation of the oblique
subharmonic to its two-dimensional counterpart. Downstream of x = 150,
both disturbances are in phase and the oblique mode (1/2, 1) grows again.
Driven by the oblique subharmonic the amplitude of the steady disturbance
(0, 1) increases as well. It is clearly visible that the phase speed of the sec-
ond subharmonic (1/4, 0) is unable to match that of mode (1/2, 0). Thus, the
subharmonic resonance known from the two-dimensional simulation of case 4B
is suppressed by the oblique modes (1/2, 1) and (0, 1). The last third of the
domain is dominated by the generation of spanwise higher harmonics, shown
in figure 4.18 b). These correspond to the small-scale structures shown above.
Temporal higher harmonics (2, k) are limited to |v̂| ≈ 10−2 which is reached at
the saturation of the first subharmonic.

The acoustic emission is illustrated in figure 4.19 for the first and second sub-
harmonics. The sound with frequency ω0/4 is generated among others in the
range of x = 200−240 which is a bit upstream compared to the two-dimensional
simulation. In the upper half of the acoustic field, the directivity is in the range
of ϕ = 60◦ to 80◦ being narrower compared to figure 4.13 b). The amplitude
itself is not reduced significantly. Below the mixing layer, the intensity is re-
duced by a factor of roughly two with a directivity ϕ = −35◦ to −90◦. Further
upstream, an additional source is located at x ≈ 130. This is the position where
the original subharmonic resonance of mode (1/4, 0) is suppressed. Thus, the
inability to adapt the phase velocity causes the noise generation in the direction
of ϕ ≈ 125◦. The sound with the frequency of the first subharmonic is shown in
figure 4.19 b). The major source exists at x ≈ 210 with a directivity mainly in
the range of ϕ = 0◦ to −60◦. Less intense noise is emitted in various directions
in the upper part of the acoustic field with a second source at x ≈ 160.

Sound is also generated for unforced frequencies, given for example for 3/8 ·ω0

and 3/4 · ω0 in figures 4.19 c) and d), respectively. While the lower unexcited
frequency contributes only a little to the emitted sound, a large noise source
with downstream directivity is observed at x = 210. Its position corresponds
clearly with the saturation of the spanwise higher harmonics, shown in figure
4.18 b). The combination of various frequencies yields a broadband noise source
where lower frequencies are directed more perpendicular to the flow speed.
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Figure 4.19: Real parts of the Fourier-transformed dilatation field at the sym-
metry plane z = 0: a) ω0/4, b) ω0/2, c) 3/8 · ω0, d) 3/4 · ω0.
Contour levels range from −2 · 10−6 to 2 · 10−6.



5 Mixing Layer with Splitter Plate

The pure mixing layer considered above allows the investigation of the funda-
mental mechanisms of sound generation. However, it is a rather academic case
since the mixing layer of a jet has its origin at the nozzle end as sketched in
figure 1.3. The thicknesses of the boundary layers on both sides of the nozzle
end cause a combination of wake and mixing layer past the trailing edge. Apart
from being a more realistic configuration, including the nozzle end will allow
the investigation of physical actuators placed at the wall (see chapter 6).

5.1 Flow Parameters

In order to investigate the influence of the splitter plate, two different thick-
nesses are considered. In the first case 5A, the thickness hTE = 0.15 is equal to
the stepsize in normal direction at y = 0. The splitter plate is implemented us-
ing the domain decomposition a sketched in figure 5.1. As shown in the detailed
view, the normal stepsize ∆y is the smallest thickness of the flat plate which
can be computed by the NS3D code. With this setup, wall boundary condi-
tions are given only at the upper and lower side of the flat plate and no special
treatment of corner points is required. The other configuration (case 5B) con-
tains a thick splitter plate with hTE = 5.41. This is achieved by adding a row
of domains behind the trailing edge with the first one having a wall-boundary
condition on its left side. Again, the possible corner point is considered to
be no boundary condition. As shown in figure 5.3 a), this is equivalent to a
chamfered edge whose spatial extent is below the resolution of the grid.

The origin of the coordinate system is located at the upper trailing edge of the
splitter plate. In streamwise direction, the mesh is uniform up to the damping
zone where the stepsize increases smoothly from ∆x = 0.15 to ∆x = 14.7 using
equation (3.106). The spacing in normal direction is ∆y = 0.15 in the middle
of the flow field and ∆y = 1.06 at the freestream boundary with a distribution
of the grid points according to equation (3.103). The additional domains in
case of hTE = 5.4 are discretized with an equidistant spacing in y-direction.
The domains above and below the splitter plate each contain 650 and 425
grid points in streamwise and normal direction, respectively. The additional

1Thanks to Vitor Kleine [51] for performing the simulation with thick splitter plate.
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domains behind the thick trailing edge are discretized with 35 grid points in
y-direction.
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Figure 5.1: Grid for the thin splitter plate showing every 25th gridline. The
domain decomposition is indicated by black and grey lines. The
detailed view illustrates the trailing edge of the splitter plate (every
gridline).

The flow field is made of two boundary layers above and below the splitter plate
which represents the nozzle end. The fast stream with MaI = 0.8 is placed on
top and the slow-speed stream with MaII = 0.2 underneath the flat plate.
With both streams having the same free-stream temperature T̃∞ = 280K,
the velocity ratio is uII/uI = 4. Since thermal conduction inside the splitter
plate is not included in the simulation, the temperature of the wall is fixed
to T̃w = 296K. This value has been selected since it is the mean value of
the adiabatic wall temperatures of the two streams. The Reynolds number
Re = ρ∞uIδ1,I/µ∞ = 1000 is based on the displacement thickness [87]

δ1 =

Z δ99

0

„
1− ρu

ρ∞u∞

«
dy (5.1)

of the upper stream at the inflow x0 = −97.5. With δ1,I(x0) = 1, length scales
are normalized with the displacement thickness of the fast stream at the inflow.
The boundary layer of the lower stream corresponds to the same origin of the
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flat plate. The profiles of the streamwise velocity at the inflow are shown in
figure 5.2 a). Behind the trailing edge, a combination of wake and mixing layer
occurs. As one can see in figure 5.2 b), the flow field keeps its wake-like shape
for a long range. With high amplifications due to the inflection points in the
velocity profile, the flow is already unsteady before a pure mixing layer can
develop.
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Figure 5.2: Streamwise velocity profiles of the baseflow:
a) upper and lower boundary layer at the inflow x = −97.5
b) combination of wake and mixing layer behind the thin splitter
plate with hTE = 0.15 (case 5A).

Due to separation behind the trailing edge, it is not possible to derive a baseflow
from the boundary-layer equations in case of the thick splitter plate. Thus, a
time-averaged solution is given in figure 5.3 b) to estimate the properties of the
flow. Behind the end of the splitter plate, a separation zone with u < 0 exists.
It is located past the upper half of the flat plate and ranges up to x ≈= 27.
In the lower part of the separation, the streamwise velocity adapts rapidly to
the lower freestream velocity. This leads to an S-shaped velocity profile much
earlier, compared to figure 5.2 b). However, the flow field is already unsteady
there as shown in figure 5.7 b).
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Figure 5.3: a) Detailed view of the mesh at the trailing edge with hTE = 5.4.
b) Streamwise velocity profiles of the baseflow behind the thick
splitter plate (time-averaged-solution of 5B).

5.2 Linear Stability Analysis

The spatial stability diagram of the upper boundary layer is given in figure 5.4
a). The maximum amplification αi = −0.004 of two-dimensional waves is rel-
atively independent of the streamwise position. Accordingly, the fundamental
frequency for disturbance generation is chosen to ω0 = 0.0688. For the thin
splitter plate, the amplification rates behind the splitter plate are shown in
figure 5.4 b). Due to the inflection points in the velocity profile, high amplifi-
cation rates occur. With values of up to αi = −0.267, the exponential growth
of disturbances is approximately 60 times stronger behind the trailing edge,
compared to the upper boundary layer. The highest amplification is achieved
for frequencies which are 3 to 3.5 the value of the fundamental frequency ω0.

In case of the splitter plate with thickness hTE = 5.4 two amplified eigenvalues
exist shortly behind the trailing edge. This is shown in figure 5.5 a), where the
temporal spectrum is given for α = 0.2, γ = 0. As for the pure mixing layer, two
continuous spectra exist. With phase speeds of cph = 1.0 and cph = 0.25, these
eigenvalues are fluctuations in the upper and lower freestream, respectively.
The most amplified eigenvalue is located between both continuous spectra.
The eigenvalue of the second unstable mode with ωr = 0.0133 is only weakly
amplified.
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Figure 5.4: Spatial amplification rates for two-dimensional disturbances:
a) upper boundary layer (x < 0), b) mixing wake behind the thin
splitter plate (hTE = 0.15)
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Figure 5.5: a) Temporal spectrum behind the thick trailing edge (hTE = 5.4).
Spanwise wave number αr = 0.2, position x = 16.35.
b) Spatial amplification rates of two-dimensional waves (γ = 0)
past the splitter plate with hTE = 5.4.
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The corresponding temporal eigenfunctions in figure 5.6 reveal the physical
meaning of both solutions. For comparison, the eigenfunctions are normalized
such that the maximum amplitude of u is one. With its maximum amplitudes
located at y = 0, the most amplified eigenvalue ωr = 0.1027, ωi = 0.0574
corresponds to the Kelvin-Helmholtz instability of the upper mixing layer. For
the velocity components and the pressure, its amplitude distribution is quite
similar to the one of the pure mixing layer of figure 4.5. As the eigenfunction
of the second amplified eigenvalue has its maximum amplitude for negative
values of y, it is an additional wake mode as found by Zhuang & Dimotakis
[110]. Accordingly, the peaks of the amplitudes cover a wider range in normal
direction.
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Figure 5.6: Temporal amplitude distributions for αr = 0.2 at streamwise posi-
tion x = 16.35. The solid and dashed lines correspond to the two
amplified eigenvalues in figure 5.5 a).

The spatial amplification rates past the thick splitter plate are given in figure
5.5 b) for both amplified solutions. Because the lower mixing layer is dissi-
pated rapidly, relevant amplification due to the second eigenvalue is only given
directly behind the trailing edge. The largest amplification is αi = −0.06 for
the first subharmonic of the fundamental frequency. Growth of disturbances is
mainly dominated by the upper mixing layer at y = 0. Compared to the thin
splitter plate, maximum amplification is found for lower frequencies.
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5.3 Simulation Results

As for the baseflow an isothermal boundary condition with pressure extrapo-
lation is used at the wall. The subsonic inflow is used along the complete left
boundary of the domain. Additionally, the upper boundary layer is forced with
the eigenfunction of its two-dimensional TS-wave with frequency ω0 = 0.0688.
The maximum amplitude of the streamwise-velocity fluctuation is |û| = 0.005.
The characteristic freestream BC is used on the upper and lower boundaries.
The buffer zone in front of the outflow boundary contains the last 370 grid
points along which the solution is filtered every 5th time step. With a time
step of ∆t = 0.02283, the fundamental period is resolved with 4000 time steps.
The analysis is based on 16 periods of the fundamental frequency. Furthermore
the acoustic emission is analyzed along 64 periods of ω0. See table 5.1 for a
summary of the simulation parameters.

case 5A 5B

splitter-plate thickness hTE 0.15 5.4
total number of grid points 2210000 2278250
computed time steps 556000 488000

∆x 0.15 - 14.738
∆y 0.15 - 1.062
fund. frequency ω0 0.0688
time step ∆t 0.02283
periods of ω0 for analysis 16/64

subsonic inflow: |û|max ∆Θ

(1, 0) 5 · 10−3 0

characteristic freestream:

damping parameter d 0.01
grid points in damping zone 40

subsonic outflow:

beginning of filtering (x-position) 250
filtering sequence (time steps) 5
ramping of filter (grid points) 5

Table 5.1: Parameters of the simulation of the mixing layer past a splitter plate.
MaI = 0.8, MaII = 0.2, Re = 1000.

Figure 5.7 shows a snapshot of the spanwise vorticity Ωz for splitter-plate
thicknesses hTE = 0.15 and hTE = 5.4. In both cases the mixing layer rolls
up with subsequent vortex pairing. The strength of Ωz is apparently the same.
In case of the small thickness hTE = 0.15, rollup occurs at x ≈ 60 and further
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downstream (x ≈ 150) two out of three vortices pair. The resulting vortex
merges with the remaining third eddy at x ≈ 220. Thereby it is almost random
whether the single eddy pairs with the precedent or subsequent bigger vortex.
In case of a thick splitter plate (hTE = 5.4), a small separation zone exists
behind the splitter plate. The dominant mixing layer originates from the edge
of the fast stream and its roll up occurs earlier compared to case 5A. The
dominant vortex pairing is located in the range of 150 < x < 200. Additionally,
single vortices can be observed which are generated randomly in the initial
mixing layer. If these are generated pairwise, they merge at x ≈ 100. A single
vortex is absorbed by a large vortex further downstream (x ≈ 200).

a)

b)

Figure 5.7: Spanwise vorticity Ωz for different thicknesses of the trailing edge:
a) case 5A with hTE = 0.15, b) case 5B with hTE = 5.4.

In the upper boundary layer, the TS wave grows independently of the thickness
of the splitter plate. As shown in figures 5.8 a) and b), the mean growth rates of
mode (1, 0) agree with the ones from linear stability theory. Near the trailing
edge, a wave-like variation of αi is visible. Its wavelength slightly decreases
from λx ≈ 20 in the middle of the splitter plate to λx ≈ 18.8 near the trailing
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edge. Its phase speeds are |cph| = 0.22 and |cph| = 0.21 which correspond to
the upstream traveling acoustic wave with cph = 1−1/MaI = −0.25. Thus, the
variation of αi is caused by the noise generation of the mixing layer and is not
due to the non-parallel flow field at the end of the splitter plate. Accordingly it
is more visible for u than for v, given in [8]. For smaller values of x, shading of
the flat plate successively reduces the upstream propagating sound to ϕ = 180◦.
Hence, the variation of αi is reduced and the wavelength increases in upstream
direction. The same effect occurs for the first higher harmonic.
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Figure 5.8: Spatial amplification rates in the upper boundary layer compared
with LST (symbols): a) hTE = 0.15, b) hTE = 5.4.

Figure 5.9 a) shows the maximum amplitude of the streamwise velocity for
case 5A. For x < 0, the data corresponds to the upper boundary layer; positive
streamwise coordinates denote the mixing layer behind the splitter plate. Non-
linear interaction of the TS wave generates higher harmonics in the upper
boundary layer, where modes (2, 0) and (3, 0) reach a level of |û| = 5 · 10−4

and |û| = 2 · 10−5, respectively. Past the trailing edge, these modes are more
amplified than the fundamental disturbance. As illustrated in figure 5.9 b),
the initial growth of (1, 0) and its higher harmonics is a linear mechanism.
Except for the early stages of the mixing layer, amplification rates are in good
agreement with LST. The higher harmonics (2, 0) and (3, 0) saturate at x =
60. There, the initial exponential growth of (1, 0) is reduced before it grows
again. The fundamental disturbance saturates at x ≈ 130. In contrast to the
pure mixing layer, the flow field is only quasi-deterministic. This appears as
subharmonics in figure 5.9 a) which can not be generated non-linearly as it is
the case for higher harmonics. With a simulated time of 139 periods of ω0 (this
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corresponds to 36 flow-through times), influences of the initial condition can
be excluded. Hence, a feedback mechanism exists: upstream running acoustic
waves which are emitted by the mixing layer impinge on the trailing edge and
generate new instability waves there.
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Figure 5.9: a) Maximum amplitude of the streamwise velocity u for the thin
plate (hTE = 0.15).
b) Spatial amplification rates behind the thin splitter plate. Results
from LST are indicated by symbols.

In case 5B, the first higher harmonic saturates earlier at x = 42 as shown by
figure 5.10 a). This is due to an increased growth rate in the mixing layer. Its
spatial amplification rate in figure 5.10 b) shows good agreement with linear
stability theory which is based on the time-averaged flow-field. The mean
amplification of the fundamental disturbance is not affected by the thicker
splitter plate. Directly behind the trailing edge, the amplitudes of disturbances
(3, 0), (4, 0) and of the subharmonics are almost constant. With a level of
|û| ≈ 2 · 10−4 the higher harmonics are of the same magnitude as the emitted
sound (see figure 5.11). Besides these acoustic disturbances, low-frequency
fluctuations exist within the separation bubble which are larger by one order
of magnitude. According to the larger subharmonic fluctuations, the flow field
shows a more random-like behavior compared to case 5A. From x ≈ 20 onwards,
the growth of the respective instability waves prevails.
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Figure 5.10: a) Maximum amplitude of the streamwise velocity u for the thick
plate (hTE = 5.4).
b) Spatial amplification rates behind the flat plate (case 5B). Sym-
bols denote results from LST.

a) b)

Figure 5.11: Snapshot of the emitted sound visualized by the dilatation ∇u in

the range of ±3 · 10−4. The position of the virtual microphone is
indicated by a white cross: a) hTE = 0.15 b) hTE = 5.4.
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A snapshot of the dilatation field is given for both cases in figures 5.11 a)
and b). The emitted sound shows to be of the same magnitude. For the thin
trailing edge, two acoustic sources can be detected. The first one is located at
x ≈ 150 which matches the position of the first vortex pairing. The main origin
of sound can be found at the second position of vortex pairing (x ≈ 220). Al-
though the main emission is directed downstream, notable acoustic waves travel
in upstream direction as well. In case of the thicker splitter plate (hTE = 5.4),
both acoustic sources are shifted slightly upstream to x ≈ 100 and x ≈ 200.
Apart from an additional source at x ≈ 100 in case 5B, both acoustic fields
look similar.

For a more quantitative evaluation of the generated sound, a virtual microphone
is placed at (x = 195, y = −121.8). At this position, indicated by a white cross
in figures 5.11 a) and b), a detailed time record is taken along 64 periods of the
fundamental frequency. The temporal Fourier-analysis is given in figures 5.12
and 5.13 for the thin and thick splitter plate, respectively.
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Figure 5.12: Spectrum of the pressure fluctuations at the virtual microphone
(x = 195, y = −121.8) for the thin splitter plate of case 5A.

ω/ω0

|p
|

0 2 4 6 8 10 12 14
10-7

10-6

10-5

10-4

10-3

10-2

^

Figure 5.13: Same as figure 5.12 but for case 5B with hTE = 5.4.
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The main sound emission is in the frequency range up to 2 · ω0 for both cases.
In case 5A, the amplitude decays, showing peaks for the first three higher
harmonics. For the thick splitter plate, the fundamental frequency is more
dominant with additional peaks of the first and third higher harmonic. The
amplitude decay for higher frequencies is weaker compared to the thin splitter
plate. From ω/ω0 = 8 onwards, the spectrum is nearly constant with |p̂| ≈
10−6. The overall sound level is considered in terms of the rms-value of the
pressure fluctuation:

p′rms =

vuut 1

N

j2X
j=j1

(p− p)2, (5.2)

computed along the considered time interval [(j2 − j1) · ∆t] = 2π/(64 · ω0).
At the location of the microphone, it is p′rms = 0.0035 and p′rms = 0.0042
for cases 5A and 5B, respectively. Thus, the thicker trailing edge increases the
sound pressure level by 1.5 dB, according to equation (1.1). Despite some minor
differences, the fundamental mechanism of sound generation is apparently the
same for both cases. Hence, the thin trailing edge is a reasonable assumption up
to moderate values of hTE and computational difficulties of the thicker splitter
plate as described in appendix C.3 are avoided.
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6 Serrated Trailing Edge

A passive means to influence the flow and the emitted sound is the adaptation
of the geometry at the trailing edge. Although this is already applied to jets
(figure 1.6), the underlying mechanisms are not well understood. In this con-
text, two different shapes of the trailing edge are studied and compared with
a reference solution. The parameters of the baseflow correspond to those from
case 5A as is the case for the mesh in x- and y-direction. Apart from some
varied parameters, the boundary conditions are the same as well. In addition
to the two-dimensional TS-wave, an oblique disturbance is introduced in the
upper boundary layer for a more realistic disturbance spectrum. With a span-
wise wavenumber of γ0 = 0.2, the oblique mode (1,±1) has a wave angle of
45◦ with respect to the streamwise direction. Accordingly, notable effects of
the serrations are expected for one notch per λz,0. The reference case 6A is
made of a straight trailing edge, ending at x = 0. The first modification of
the geometry is a rectangular notch denoted as case 6B. As shown in figure 6.1
a), it covers half the spanwise extent of the domain. The influence of a non-
symmetric geometry is investigated by the trailing edge of case 6C, sketched in
figure 6.1 b). The depth of both serrations ranges back to x = −10.
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Figure 6.1: Top view on the two different engrailments of the trailing edge:
a) rectangular notch (case 6B),
b) curved non-symmetric shape (case 6C).
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Due to the small amplitude of the oblique forcing, three-dimensional effects
are expected to play a minor role in case 6A. Hence, a coarser resolution in
z-direction of 10 modes is used, here. For the three-dimensional geometries, the
spanwise direction is resolved with 42 modes which corresponds to ∆z = 0.245.
In physical space, the spanwise direction is resolved with 65 and 128 points for
the symmetric case 6B and the non-symmetric case 6C, respectively. A total
number of 105000 time steps, equivalent to 21 periods of the TS-wave, have been
computed. Due to the simulated time and the huge amount of data, analysis
is limited to eight periods of ω0. A detailed set of simulation parameters is
given in table 6.1. With up to 283 million grid points, the computational effort
strongly increases compared to chapter 5. Hence, the domain is decomposed
into 16 subdomains (8 in streamwise and 2 in normal direction), allowing the
usage of 128 processors.

case 6A 6B 6C

serration none rect. aslope
total number of grid points 37.6 · 106 143 · 106 283 · 106

number of spanwise modes 10 42 42
spanwise symmetry yes yes no

∆x 0.15 - 14.738
∆y 0.15 - 1.062

∆z 0.9817 0.245

fund. spanwise wave number γ0 0.2

fund. frequency ω0 0.0688
time step ∆t 0.01826
computed time steps 105000
periods of ω0 for analysis 8

subsonic inflow: |û|max ∆Θ

(1, 0) 5 · 10−3 0.0
(1,±1) 5 · 10−4 0.0

characteristic freestream:

damping parameter d 0.04
grid points in damping zone 20

subsonic outflow:

beginning of filtering (x-position) 250
filtering sequence (time steps) 20
ramping of filter (grid points) 20

Table 6.1: Simulation parameters for the investigation of different trailing edges
(MaI = 0.8, MaII = 0.2, Re = 1000).
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6.1 Reference Case

The reference case 6A is only slightly determined by three-dimensional effects as
shown by the isosurface Λ2 = −0.005 in figure 6.1. Up to x = 100, the spanwise
Kelvin-Helmholtz vortices dominate the flow field. The following vortex pairing
shows the first notable variation in z-direction. While the merged vortex at
x ≈ 180 is mainly two-dimensional, a stronger spanwise modulation of its small
counterpart can be observed. The final vortex is again mainly two-dimensional.
Hence, the minor spanwise resolution with 10 modes is justified for the reference
case.

Figure 6.2: Instantaneous view of the vortical structures after 21 periods of the
fundamental frequency, visualized by the isosurface Λ2 = −0.005
along two spanwise wavelengths. The normal coordinate is colored
from blue to red.

The maximum amplitudes of the normal velocity v are given in figure 6.3 a). In
the upper boundary layer (x < 0), disturbances behave as in the corresponding
two-dimensional case of chapter 5. According to the introduced disturbances,
oblique modes are smaller than their 2-d counterparts by one order of mag-
nitude. Behind the trailing edge, the disturbances grow according to linear
stability theory as shown in figure 6.3 b). Having a two-dimensional baseflow,
oblique waves are less amplified than those with γ = 0. Due to its high am-
plification, mode (3, 0) saturates first at x = 80. From this point onwards, the
growth of the oblique modes is interrupted. In this region, the phase speeds
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of modes (1, 0) and (2, 0) are not able to adapt to the locally dominant distur-
bance (3, 0). Hence, its growth can be observed as the dominant disturbance
decays. A bit downstream the fundamental disturbance exceeds the amplitude
of (3, 0) and saturates at x ≈ 200. Subharmonics grow rapidly behind the
saturation of mode (3, 0) reaching a level of up to 15%.
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Figure 6.3: a) Maximum amplitude of the normal velocity component.
b) Spatial amplification rates behind the straight trailing edge. Re-
sults from LST for γ = 0 are marked with symbols.
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Figure 6.4: Phase velocities of two-dimensional disturbances, computed from
the normal velocity v.
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a) b)

c) d)

Figure 6.5: Real part of the Fourier-transformed dilatation field for the straight
trailing edge at z = 0. Contour levels are in the range of ∇u =
±3 · 10−3: a) ω0, b) 7/4 · ω0, c) 2 · ω0, d) 3 · ω0

The spectral decomposition of the acoustic field is visualized by the real part
of the Fourier-transformed dilatation field at the symmetry plane z = 0. This
is shown in figure 6.5 a) - d) for the fundamental frequency, the undisturbed
frequency 7/4·ω0 and the first two higher harmonics, respectively. The acoustic
emission is dominated by the frequency of the TS-wave. Upstream propagating
sound with frequency ω0 is generated at x = 60, where mode (1, 0) tries to
adapt to the phase speed of the dominating disturbance (3, 0). Yet the major
source is located at x ≈ 200. Its directivity ranges from ϕ ≈ −110◦ in the
lower half to ϕ ≈ 100◦ in the upper half of the domain. This region is also
the source of sound with other frequencies as shown exemplarily for 7/4 · ω0

in figure 6.5 b). The emission of noise with frequencies of the first two higher
harmonics originates from x = 100. Despite the second higher harmonic is the
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first disturbance which saturates, its emission is relatively weak, compared to
figures 6.5 a) - c).

6.2 Rectangular Serration

An instantaneous view of the flow field and the square-notched splitter plate
is given in figure 6.6, showing the isosurface Λ2 = −0.005 along two spanwise
periods. At x ≈ 50, a spanwise modulation of the Kelvin-Helmholtz vortices is
visible. This croissant-shaped deformation is due to the earlier beginning of the
mixing layer inside the notch. The strong spanwise gradients lead to stream-
wise vortices which are twisted around their spanwise counterparts. This can
be seen in more detail in the top view of figure 6.7. Longitudinal vortices
approach in spanwise direction while moving on top of the subsequent Kelvin-
Helmholtz vortex. Thereby the position of the spanwise vortex alters along
z. This is similar to the experimental results of Kit et al. [50] who found a
spanwise modulation of vortex-strength (bulging) and -position (bending) of
Kelvin-Helmholtz vortices. Further downstream, the interaction of streamwise
and spanwise vortices leads to an early breakdown of the large-scale coher-
ent structures. From x ≈ 130 onwards, only small eddies are visible. Yet
these are still accumulated in groups with a distance roughly corresponding to
the Kelvin-Helmholtz vortices of the reference case. At x ≈ 200, streamwise
vortices are almost uniformly distributed along the spanwise direction. Longi-
tudinal vortex tubes are also subject to instabilities as indicated by corkscrew
vortices, e.g. at x ≈ 180.

A spectral decomposition is shown in figures 6.8 a) and b), based on the max-
imum amplitude of the normal velocity along y. In the upper boundary layer
(x < 0), the mean growth of the Tollmien-Schlichting wave is in good agree-
ment with linear stability theory (figure 6.8 a)). Its non-linear interaction with
(1, 1) generates the steady mode (0, 1) up to an amplitude of |v̂| = 2 · 10−5.
From x = −25 onwards, this is exceeded by the upstream effect of the engrail-
ment. The serrated trailing edge (−10 ≤ x ≤ 0) generates steady spanwise
disturbances (0, k) up to |v̂| = 8 · 10−3. In the notch, the combination of wake
and mixing layer originates further upstream, which corresponds to the steady
spanwise mode (0, 1). Its amplitude decreases behind the trailing edge up to
x = 15. Higher harmonics in spanwise direction (0, 2) and (0, 4) are generated
at the notch as well, staying almost constant behind the splitter plate.
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Figure 6.7: Top view on the mixing layer downstream of the square-notched
trailing edge (detailed view of figure 6.6).
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Figure 6.8: Maximum amplitude of the normal velocity component:
a) steady modes (0, k), b) unsteady modes (h, k)
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Figure 6.9: Spatial amplification rates compared with linear stability theory
(symbols):
a) upper boundary layer, b) behind the splitter plate

In the upper boundary layer, higher harmonics of the fundamental frequency
are generated. With an amplitude of the driving TS-wave of |v̂| = 2 · 10−3,
modes (2, 0), (3, 0) reach amplitudes of |v̂| = 3 · 10−4 and |v̂| = 2 · 10−3, respec-
tively. At the trailing edge, steady modes due to the serration interact with the
two-dimensional waves, generating unsteady oblique modes (h, 1). Unlike the
stability results of Gudmundsson and Colonius [38] for high-Reynolds-number
jets, amplification rates behind the trailing edge are only weakly affected by
the modified geometry, here. As shown in figure 6.9 b), the growth of high-
frequency, two-dimensional waves is only slightly reduced. Hence, the strongest
growth is found again for mode (3, 0) which saturates at x ≈ 70. Despite having
a slightly reduced amplification, its growth already starts inside the notch and
thus, it saturates earlier compared to the simulation 6A. As in the reference
case, the growth of the fundamental disturbance continues after the decay of
(3, 0) and reaches its maximum at x ≈ 200. Oblique modes grow up to an
amplitude of some 5%. Having a relevant amplitude now, oblique fluctuations
affect the growth of two-dimensional subharmonics. They are reduced by a
factor of roughly 3 compared to the reference case.

Figure 6.10 a) - d) shows the acoustic field for the same frequencies as in the
reference case. The most significant difference is visible for the fundamental
frequency where the dominant sound source at x ≈ 200 is removed. This is also
the case for the undisturbed frequency 7/4 · ω0 and the first higher harmonic
whose acoustic emissions are reduced especially in the lower half of the domain.
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a) b)

c) d)

Figure 6.10: Real part of the Fourier-transformed dilatation field at the sym-
metry plane z = 0 for the rectangular engrailment (contour levels
as in figure 6.5):
a) ω0, b) 7/4 · ω0, c) 2 · ω0, d) 3 · ω0

For frequency 3 ·ω0, a minor drop of the generated sound can be observed. The
upstream-directed sound emission with frequency ω0 (x ≈ 70) is not affected by
the serration since resonance of mode (1, 0) is inhibited there as well. Despite
the strong modification of the acoustic field, the position of the sources is not
changed compared to the reference solution of case 6A.

6.3 Non-symmetric Serration

For the non-symmetric trailing edge, the vortical structures after 21 periods of
the TS-wave are illustrated in figure 6.11 and 6.12.
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Figure 6.12: Top view on the mixing layer downstream of the non-symmetric
serrated splitter plate (detailed view of figure 6.11).

Similar to the case 6B, the initial Kelvin-Helmholtz vortex at x = 55 is mod-
ulated along the spanwise direction. Yet this is no more symmetric. The
strongest gradients occur behind the sharp edge, generating streamwise vor-
tices which are directed towards the center of the notch (figure 6.12). The
bending of the subsequent spanwise vortex at x = 75 is less intense than in
the symmetric case. Despite less streamwise vortex tubes exist up to x = 120,
a breakdown to small-scale structures occurs for x > 125. As shown in fig-
ure 6.11, streamwise vortices are already distributed equally along the span at
x ≈ 170. Since corkscrew vortices are not visible, longitudinal vortices seem to
be less affected by additional instabilities. This might be due to their closer
alignment to the accumulations of small-scale structures. Compared to the
result for the symmetric serration, a more homogeneous distribution is visible
at the end of the domain.

The non-symmetric serration generates steady disturbances (0, k), shown in
figure 6.13 a). With sustained amplitudes of up to |v̂| = 3 · 10−3 inside the
notch, it is more effective in generating a spanwise deformation. Similar to the
symmetric case, its upstream effect is weak.
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Figure 6.13: Maximum amplitudes of the normal velocity component:

a) steady modes (0, k), b) unsteady modes (h, k)
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Figure 6.14: Spatial amplification rates compared with linear stability theory
(symbols):
a) upper boundary layer, b) behind the splitter plate

As shown in figure 6.13 b), the disturbance spectrum in the upper boundary
layer is similar to the previous cases: the TS-wave grows according to linear
stability theory (figure 6.14 a)), generating higher harmonics. At the trailing
edge, oblique waves are generated by the interaction of two-dimensional insta-
bilities with steady disturbances (0, k). Keep in mind that amplitudes for left-
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and right-running waves ((h,+k) and (h,−k)) are regarded separately in the
non-symmetric simulation. Since figure 6.14 b) shows similar results as for the
symmetric serration, the shape of the serration does not affect the linear growth
of two-dimensional disturbances. Hence, mode (3, 0) saturates at x ≈ 70 like
in case B. Three-dimensional disturbances reach an amplitude up to the one
of (1, 0), there. Compared to the rectangular notch, higher-harmonic oblique
waves are larger by a factor of approximately 3. Subharmonics with γ = 0 are
limited to |v̂| ≈ 10−2 in the rest of the domain.

a) b)

c) d)

Figure 6.15: Real part of the Fourier-transformed dilatation field at the sym-
metry plane z = 0 (non-symmetric engrailment). Contour levels
are in the range of ∇u = ±3 · 10−3:
a) ω0, b) 7/4 · ω0, c) 2 · ω0, d) 3 · ω0

The resulting acoustic field is shown by means of the real part of the Fourier-
transformed dilatation field in figure 6.15 a) - d), again for frequencies ω0,
7/4 · ω0, 2 · ω0 and 3 · ω0, respectively. The dominant acoustic source for the
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fundamental frequency is removed as found for the rectangular serration. The
upstream propagating acoustic wave due to the scattering phase at x ≈ 60
remains as well. For the undisturbed frequency 7/4 · ω0, noise reduction is
more efficient than in case 6B. Yet this is not the case for the second higher
harmonic whose emission in the range of −100◦ < ϕ < −45◦ is not reduced
compared to figure 6.5 c). The acoustic field for 3 · ω0 is basically the same as
for the rectangular notch.

6.4 Comparison of Sound Emission

A direct comparison of the overall SPL is given in figures 6.16 a) - c) for
cases 6A - 6C, respectively. Since all quantities are normalized, it is given
only in increments of decibels. Yet if we assume the freestream pressure to be
one bar, the contour levels are equivalent to 50 (black) to 100 dB (white). The
acoustic field of the straight trailing edge is dominated by downstream directed
sound which is substantially removed by both serrations. The rectangular notch
generates less intense sound in the lower half of the domain, distributed more
uniformly than in case 6C. This is in agreement to the experimental studies of
Bridges and Brown [17] who found asymmetry to reduce the impact of chevrons
slightly. On the other hand acoustic waves propagating inside the jet (x < 0,
y > 0) are decreased most for the non-symmetric serration.

a) b) c)

Figure 6.16: Overall sound pressure level Lp at z = 0, ranging from black to
white with increments of 5 dB: a) straight, b) rectangular and c)
non-symmetric trailing edge.

The actual noise reduction is illustrated in figures 6.17 a) and b), showing the
difference of the SPL with respect to the reference case 6A. Due to additional
oblique modes, hydrodynamic pressure variations in the mixing layer are in-



116 6 Serrated Trailing Edge

creased by some 5 dB directly behind the trailing edge for both cases. Yet
missing large-scale structures lead to lower fluctuations further downstream.

The reduction of actual sound is determined by the difference in the farfield.
In the lower freestream, the rectangular serration yields a noise reduction in
the range of 6 to 10 dB with its distribution being relatively uniform along the
streamwise direction. For positive values of y, downstream running acoustic
waves are decreased by the same order of magnitude. Yet sound waves which
propagate inside the jet are locally increased at x ≈ 0, y ≈ 150. For the non-
symmetric serration, the sound emission in downstream direction is decreased
locally by more than 10 dB in the lower half of the domain (x > 200, y < 0).
On the other hand, the reduction of acoustic waves directed perpendicular to
the flow speed is less distinct. This is due to the fact that sound with 2 · ω0 is
not reduced substantially as revealed by figure 6.15 c).

a) b)

-10 -5 0 5

∆Lp [dB]

Figure 6.17: Difference of the sound pressure level ∆Lp in dB at z = 0 ver-
sus the reference case. The position of the virtual microphone is
marked by a white cross. a) rectangular, b) non-symmetric notch.

The spectrum of the generated sound is compared in figure 6.18 for all three
cases. It is based on a detailed time record at one location. The position (x =
195, y = −121.8, z = 0) of this virtual microphone is the same as for the two-
dimensional case in chapter 5. Its location is indicated by a cross in figures 6.17
a) and b). The spectrum of the reference case is dominated by lower frequencies.
The maximum amplitude |p̂| = 0.002 is found for the fundamental frequency.
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Furthermore, subharmonics contribute notably to the generated sound. Unlike
the two-dimensional simulation, explicit peaks of higher harmonics can not be
observed. For higher frequencies, amplitudes of the pressure decay down to
|p̂| ≈ 10−5. For both shapes of the splitter plate, the low-frequency noise is
reduced. In the range of approximately 4 · ω0 to 20 · ω0, the emitted sound is
partly increased. Comparing the pressure spectra of figures 6.18 (z = 0) and
6.19 (z = λz,0/2) shows that the sound emission is quite independent from the
spanwise position for all three cases.
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Figure 6.18: Amplitude spectrum of the pressure at the virtual microphone
located at x = 195, y = −121.8, z = 0.
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Figure 6.19: Pressure spectrum as in figure 6.18 but at spanwise location
z = λz,0/2 = 15.708.

These results go with the experimental observations of Bridges and Brown
[17] and Callender et al. [20]. Low-frequency noise is reduced since large-scale
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Kelvin-Helmholtz vortices are destroyed. On the other hand, small eddies cause
an increase of sound at higher frequencies. Considering the results for the pure
mixing layer (chapter 4), noise reduction can be explained partially by lower
amplitudes of the subharmonics.



7 Turbulent Mixing Layer

In the previous chapter, the two boundary layers upstream of the trailing edge
were assumed to be laminar, containing only linear instability waves. However,
the boundary layers in a real jet engine are typically turbulent, e.g. due to
high-amplitude disturbances generated by the turbine. Therefore, the sound
generation of a mixing layer with a turbulent boundary layer of the fast stream
is investigated. The major flow parameters match those of chapters 5 and 6
with MaI = 0.8, MaII = 0.2 and Re = 1000. Using the Reynolds number of
the previous cases, the reference length L̃∞ stays the same. Yet the length
scale corresponds no more to a specific boundary-layer thickness.
Before performing the actual simulation of the mixing layer, unsteady inflow
data is required. Hence, laminar-turbulent transition of a flat-plate boundary
layer is simulated first (section 7.1). The resulting time-dependent output is
used as inflow condition for the actual simulation of the mixing layer given in
section 7.2.

7.1 Generation of Inflow Data

Laminar-turbulent transition of a Ma∞ = 0.8 boundary layer is simulated along
the streamwise coordinates x = 1400 to 1707, where x = 0 corresponds to the
leading edge of the flat plate. Compared to previous cases, the inflow is shifted
further downstream. This ensures that amplification is quite independent of
the frequency along the streamwise coordinate. The fundamental frequency
ω0 = 0.03 is given by the highest amplification rate of the TS-wave. The flow
is forced at the inflow by eigenfunctions from linear stability theory with ar-
bitrarily chosen phase shifts. The disturbance spectrum is selected according
to a subharmonic transition scenario (H-Type) [40]. Beyond the first subhar-
monic (1/2, k), oblique waves with 2/3 ·ω0 are introduced as well providing an
out-of-tune disturbance spectrum. Hence, the flow is periodic with respect to
every sixth period of the TS-wave. Furthermore oblique waves are given for
two spanwise wavenumbers. The fundamental spanwise wavenumber γ0 = 0.1
yields wave angles of Ψ = 68◦, 79◦, 62◦ and 78◦ for modes (1/2, 1), (1/2, 2),
(2/3, 1) and (2/3, 2), respectively. Relatively large amplitudes (|û|max = 0.02)
and the variety of disturbances are intended to provide a rapid breakdown to
turbulence.
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In streamwise direction, the grid is uniform with a stepsize of ∆x = 0.14 in
the considered region. At x = 1707, the sponge zone begins and the mesh is
stretched according to equation (3.106) by a factor of up to 100 at the end
of the integration domain. In wall-normal direction, the step size is increased
smoothly from ∆y = 0.06 at the wall to ∆y = 1.21 at the freestream, located
at y = 133. With spanwise symmetry, 42 spanwise modes correspond to 65 grid
points in z-direction and a stepsize of ∆z = 0.49. The total number of 46.8
million grid points is distributed uniformly on eight subdomains. The number
of computed time steps corresponds to 8.3 flow-through times. A detailed list
of the simulation parameters is provided by table 7.1.

case 7A

number of grid points (Nx ×Ny ×Nz) 2400× 300× 65
∆x 0.14 - 13.9
∆y 0.06 - 1.21
∆z 0.49
number of spanwise modes 42
fund. spanwise wave number γ0 0.1
time step ∆t 0.0157
computed time steps 160000
fundamental frequency ω0 0.03
periods of ω0 for analysis 6

subsonic inflow (x0 = 1400): |û|max ∆Θ

(1, 0) 0.02 0.0
(1/2, 1) 0.02 0.3
(1/2, 2) 0.02 0.6
(2/3, 1) 0.02 0.8
(2/3, 2) 0.02 0.4

characteristic free stream:

damping parameter d 0.08
grid points in damping zone 20

subsonic outflow:

beginning of filtering (x-position) 1707.1
filtering sequence (time steps) 10
ramping of filter (grid points) 20

Table 7.1: Simulation parameters for the turbulent boundary layer with
Ma∞ = 0.8 and Re = 1000.
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The resulting flow field at time instant t = 2513.3 is given in figure 7.1, showing
the isosurface Λ2 = −0.01. From x ≈ 1550 on, first vortices emerge near the
symmetry plane. Further downstream a turbulent spot around z = λz,0/2 is
visible. They are followed by some Ω-vortices similar to the incompressible DNS
of Meyer [67]. Unlike his symmetric simulation, the legs of the Ω-vortices have
already disappeared. Downstream of x ≈ 1650, breakdown along the complete
spanwise direction can be observed. At the end of the physical domain (x =
1707), a relatively uniform distribution of vortices in the spanwise direction is
reached.

Figure 7.1: Isosurface Λ2 = −0.01 of the turbulent boundary layer along one
spanwise wavelength at t = 2513.3. Color denotes the wall-normal
coordinate, ranging from blue to red.

Laminar-turbulent transition is known to increase wall friction [87, 106]. It is
considered by the friction coefficient being the wall-normal shear stress nor-
malized by the dynamic pressure:

cf =
τw

1
2
· ρ∞u2

∞
(7.1)

τw =
µw
Re
· ∂u
∂y

˛̨̨̨
w

(7.2)

The streamwise evolution of the time- and spanwise-averaged 〈cf 〉 is shown in
figure 7.2 a), with time and spanwise mean values being marked with and
〈 〉, respectively. It is compared with the Blasius solution and the formula for
turbulent boundary layers by Prandtl [87]. Near the inflow where the flow is
dominated by single disturbances, 〈cf 〉 corresponds to the laminar case. Further
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downstream, it increases even above the empirical solution for turbulent flows,
which is typical for laminar-turbulent transition. The inflection point of 〈cf 〉
is found at x ≈ 1600 where the first turbulent spot appears. Displacement
thickness δ1 according to equation (5.1) and momentum thickness

δ2 =

Z δ99

0

ρu

ρ∞u∞

„
1− u2

u2
∞

«
dy (7.3)

describe the wall-normal extent of the boundary layer. Note that integration
of δ1 and δ2 is done only within the boundary layer. Otherwise acoustic fluc-
tuations in the freestream can distort the result. Their time- and spanwise
average are given in figure 7.2 b). Since the streamwise-velocity profile of tur-
bulent boundary layers is more bulbuous, the displacement thickness decreases
during transition until it grows again (x > 1670). Yet growth of the momentum
thickness is increased, reaching a value of Re · δ2 = 1220 in front of the sponge
zone. Figure 7.3 shows its spanwise dependency at x = 1707 together with the
shape factor H12 = δ1/δ2. Maximum values of Re · δ2 exist at the symmetry
plane and at z = λz/2. A spanwise variation of similar magnitude was also
found by Meyer [67]. Like in his DNS, the shape factor H12 is quite constant
along the spanwise direction.
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Figure 7.2: a) Streamwise distribution of friction coefficient 〈cf 〉, compared
with laminar solution and the friction formula of Prandtl for
turbulent flows [87].
b) Streamwise evolution of time- and spanwise-averaged
displacement- and momentum-thickness.
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Figure 7.3: Reynolds number based on the momentum thickness δ2 and shape
factor H12 along spanwise direction at x = 1707. Dotted lines
denote spanwise averaged values.

Velocity profiles are compared directly and by scaling them and the wall-normal
coordinate with the wall-friction velocity uτ , providing so-called wall units:

uτ =

s
〈τw〉
ρ

(7.4)

u+ =
〈u〉
uτ

(7.5)

y+ =
uτ · ρ
µ
· y (7.6)

For Ma∞ = 0.8, the wall-normal variation of density and temperature is weak.
Thus, the freestream values of ρ∞ and µ∞ are used in equations (7.4) and (7.5)
for simplicity.

The time- and spanwise-averaged velocity profile at x = 1707 is given in figure
7.4 a). Averaging is done within the simulation using every complete Runge-
Kutta cycle within the last six periods of the TS wave. Despite having com-
pressible flow and a lower Reynolds number Re · δ2, the result corresponds well
to the incompressible DNS of Spalart [94]. Good agreement is also found for the
mean profile in wall units shown in figure 7.4 b) together with the correlations
for the viscous sublayer and the logarithmic range given by White [106]. For
y+ < 10, the u+-profile follows the slope of the viscous sublayer followed by
the logarithmic range up to y+ ≈ 150. Before reaching its final value u+ = 22,
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the mean profile exceeds the log-law distribution. Similar postprocessing is
shown in figure 7.5 for the root-mean-square values of the velocity fluctuations,
based on the last 80000 time steps. For all quantities, the current simulation
produces slightly larger fluctuations compared to the incompressible DNS of
Spalart. Yet the location of the maximum of u+

rms and the overall trend of all
three lines are the same in the compressible case.

In wall units, the stepsize in normal direction at the wall is ∆y+ ≈ 2.72 at
x = 1707. This is larger than ∆y+ ≈ 1 proposed by Spalart. Yet the viscous
sublayer is resolved sufficiently by the high-order compact scheme, providing
good results on this mesh (figure 7.4). Since the time step limit is determined
strongly by the wall-normal stepsize, a larger time step can be used and thus,
the simulation is performed faster. Stream- and spanwise resolutions in wall
units are ∆x+ = 6.3 and ∆z+ = 22, respectively.

a)

y/δ99

〈u
〉

0 0.4 0.8 1.2
0

0.2

0.4

0.6

0.8

1

_

b)

y+

u+

101 102 103
0

5

10

15

20

25

u+ = y+ (y+<10.8)

u+ = 1/0.41⋅ ln(y+) + 5 (y+>10.8)

Figure 7.4: a) Time- and spanwise-averaged velocity profile at x = 1707 with

Re · 〈δ2〉 = 1220.
b) Averaged velocity profile, normalized with wall-friction velocity
uτ at the same position. Viscous sublayer and log-law are marked
with dashed lines, see White [106]. In both plots, circles denote
results from the incompressible simulation of Spalart [94] for
Re · 〈δ2〉 = 1400.
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nents at x = 1707 compared with the DNS of Spalart [94] marked
with symbols.

Furthermore, spatial decay rates in x- and z-direction are compared with their
theoretical values for turbulent flows in figures 7.6 a) and b). The energy spec-
tra are computed by Fourier-transformation of u in the respective direction,
squaring the amplitude and finally averaging it along all other directions in-
cluding time, denoted by_. According to the 〈cf 〉-distribution in figure 7.2 a),
the streamwise interval 1679 < x < 1707 is limited to the turbulent region,
providing wavenumbers down to α = 0.22. Since the boundary layer grows in
streamwise direction, a Hanning-window is required for the Fourier transforma-
tion along x, see Bonfigli [16] for details on windowing. The range of spanwise
wavenumbers is given by γ0 = 0.1 and the number of modes. Due to spanwise
periodicity no windowing is required for the Fourier transformation along z.
Averaging in normal direction and time is done for 0 < y < 10.13 and along 40
time steps with an increment of ∆t = 31.42, respectively.

The averaged energy spectrum in figure 7.6 a) shows a decay according to the
slope α−5/3 up to α ≈ 4.5. For higher wavenumbers, the flow is dominated
by viscous dissipation, hence following the slope α−7. The results are in good
agreement with the incompressible DNS of Bonfigli [16]. The steeper declining
near the resolution limit is due to the inherent high-wavenumber damping of the
numerical scheme (section 3.3.1). With multiple wavenumbers in the viscous
range being included, the streamwise resolution is fine enough to capture all
relevant turbulent scales. In figure 7.6 b), the initial decay in spanwise direction
is again of shape α−5/3. Wavenumbers larger than α = 4.2 are erased due to
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dealiasing of the spectral ansatz (2/3 rule). Since the cut-off wavenumber
corresponds quite well to the beginning of the viscous range found for the
streamwise direction, the spanwise resolution is just sufficient for a DNS.
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Figure 7.6: Averaged energy spectra of streamwise velocity component along
a) x-direction and b) z-direction. Dashed lines show the slopes
α−5/3, α−7 and γ−5/3 (averaging along 40 time steps with increment
∆t = 31.42, 1679 < x < 1707, 0 < y < 10.13, 0 < z < λz,0).

Even if this simulation is intended primarily to provide unsteady inflow data
for the turbulent mixing layer in section 7.2, it is worth to take a look at the
acoustic field, too. Its temporal development is illustrated in figure 7.7 by
snapshots of the dilatation ∇u. The sound emission is dominated by an acous-
tic source, emerging at x ≈ 1600 where the first turbulent spot appears. It
travels in streamwise direction with approximately 70% of the freestream ve-
locity. Note that no acoustic disturbances are generated at the inflow despite
high-amplitude disturbances which are introduced there.

With mean values, fluctuations and spectra showing the typical characteristics
of turbulent flows, the numerical scheme is successfully validated for the turbu-
lent flows and the resulting boundary layer is an appropriate inflow condition
for the following DNS of a turbulent mixing layer.
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Figure 7.7: Snapshots of the transitional boundary layer’s acoustic field up to
time level t = 2419 with increment ∆t = 62.83 (dilatation in the
range of ∇u = ±2 · 10−4).
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7.2 Results for the Turbulent Mixing Layer

The physical domain (without sponge zone) for the turbulent mixing layer cov-
ers a range of −41.8 ≤ x ≤ 260 and −199 ≤ y ≤ 199 in streamwise and normal
direction, respectively. Compared to previous simulations (6A-6C), the length
of the splitter plate is reduced. This allows to use more grid points past the
trailing edge. The spanwise extent is given by the fundamental wavenumber
γ0 = 0.1 of the unsteady inflow data. The stepsize ∆x = 0.14 of the previous
boundary-layer simulation is kept until the sponge zone, where it is smoothly
increased up to ∆x = 16.576. In normal direction, the stepsize ∆y = 0.06 at
the wall is taken as well from case 7A. Yet the stretching ratio is decreased
since a fine mesh is required over the whole mixing layer which is distinctly
thicker than the introduced boundary layer. The spanwise symmetric flow is
resolved with 42 modes (dealiased) and hence, 65 grid points along z are used
in physical space. This yields a total number of 196.56 million grid points.

As mentioned above, freestream conditions are the ones of chapter 5 and again,
the wall temperature is fixed to T̃w = 296K. The boundary layer thickness of
the upper boundary layer at the inflow is given by the previous simulation and
corresponds to a distance of 1693.17 from the leading edge. The thickness of
the low-speed boundary layer is the one of the previous simulations. Thus, a
moderate thickness of the mixing layer is achieved. This has the advantage of
i) higher amplification rates and ii) a smaller region with fine resolution.

The total number of time steps is 144000 with ∆t = 0.01309. This is equivalent
to more than 6 flow-through times. The inflow data of the turbulent boundary
layer is interpolated on the finer mesh up to y ≈ 25. It contains 4000 time
steps along six periods of the TS-wave of case 7A. Hence, the last six periods
of the fundamental frequency are used for analysis. The simulation parameters
are summarized in table 7.2.

Figure 7.8 shows a snapshot of the vortices above the splitter plate and in the
mixing layer. Up to the trailing edge, flow structures are distributed quite
uniformly in spanwise direction. Yet from x ≈ 50 onwards, vortices protrude
from the mixing layer in the symmetry planes z = 0 and z = λz,0/2. This
is increased in streamwise direction, forming ring-like vortices along z. Below
the mixing layer, the largest extent in normal direction is found only around
the symmetry plane z = 0. Thus, the streamwise growth of the mixing layer
mainly occurs in the symmetry planes, as shown by the color distribution in
figure 7.8.



7.2 Results for the Turbulent Mixing Layer 129

case 7B

number of grid points (Nx ×Ny ×Nz) 2400× 1260× 65
∆x 0.14 - 16.576
∆y 0.06 - 0.827
∆z 0.49
number of spanwise modes 42
fund. spanwise wave number γ0 0.1
time step ∆t 0.01309
computed time steps 144000
fundamental frequency ω0 0.03
periods of ω0 for analysis 6

turbulent inflow:

number of time steps 4000
range in x −41.888 .. −39.433
range in y 0 .. 24.944

characteristic free stream:

damping parameter d 0.05
grid points in damping zone 20

subsonic outflow:

beginning of filtering (x-position) 260
filtering sequence (time steps) 20
ramping of filter (grid points) 20

Table 7.2: Simulation parameters for the turbulent mixing layer with MaI =
0.8, MaII = 0.2 and Re = 1000.

The increasingly non-uniform spanwise distribution has its origin in the intro-
duced turbulent boundary layer which shows an increased momentum thickness
at z = 0 and z = λz,0/2 as well (see figure 7.3).

The mixing layer’s temporal development is shown in figure 7.9 by a sequence
of artificial shadow graphs. The time frame shown corresponds to 37.5% of the
period of the fundamental frequency ω0. Along the splitter plate, the thickness
of the upper boundary layer varies strongly with time. Thus, the introduced
data corresponds to a rather early-turbulent boundary layer. The mixing layer
grows mainly in the lower half of the domain. The spreading angle of approxi-
mately 10◦ is constant along the streamwise direction and hence, fluctuations
are visible down to y < −40 in figure 7.9’s last view. Along the fast stream,
the growth of the mixing layer is much smaller.
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Figure 7.9: Artificial shadow graphs of the turbulent mixing layer, showing
density gradients in the symmetry plane z = 0. The temporal
development is shown by increments of ∆t = 26.18, starting at
t = 1727.88 (top to bottom). Coherent structures mentioned in the
text are marked with circles.
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The flow field is dominated by small-scale structures. Yet it is possible to de-
tect accumulations of eddies. Especially in the first snapshot of figure 7.9, a
row of circular structures is visible at x ≈ 45, 70, 100 and 140. Since they are
superimposed with small-scale structures, it is hard to follow their position in
time. Yet this is more clear for the big vortex located at x ≈ 200, 220, 240 and
260 for the given time levels (top to bottom). Being quite large compared to
the small eddies, one may speak of the first “real“ turbulent Kelvin-Helmholtz
vortex here.

The time and spanwise averaged streamwise velocity is shown in figure 7.10 a)
for an exemplary position x = 150. It corresponds to the S-shaped velocity
profile, used in chapter 4. Fluctuations of the three velocity components are
regarded by their rms-values at the same streamwise position in figure 7.10
b). Due to the absence of a wall, they are not normalized with a friction
velocity as done for the turbulent boundary layer. The streamwise velocity
shows the dominant disturbance with 〈urms〉max = 0.14. Compared to fig-
ure 7.4 b) of the turbulent boundary layer, the spanwise velocity fluctuation
〈wrms〉max = 0.1 is only slightly larger than its counterpart in normal direction
with 〈vrms〉max = 0.096. All quantities show a quite symmetric behavior with
respect to the center of the mixing layer y = 0.
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Figure 7.10: a) Temporal and spanwise averaged velocity profile at x = 150.
b) Spanwise averaged rms-values of the three velocity fluctuations
at the same x-position.
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Figures 7.11 a) and b) show the averaged energy spectra in analogy to the
turbulent boundary layer. They are based on the last six periods of the funda-
mental frequency and the spatial extent covers a region of 125.66 < x < 167.41,
−20 < y < 20, 0 < z < λz,0. The Hanning window is applied in x- and y-
direction to account for non-periodicity.
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Figure 7.11: Averaged energy spectra of streamwise velocity component along
a) x-direction and b) y-direction with dashed lines indicating decay
rates α−5/3, α−7 and β−5/3, β−7, respectively (averaging along
120 time steps with increment ∆t = 10.47, 125.66 < x < 167.41,
−20 < y < 20, 0 < z < λz,0).

In both directions, the spectra follow the decay rates with the power of −5/3
and −7. The streamwise spectrum is in the viscous range (α−7) for wavenum-
bers larger than roughly 4.5 as found in figure 7.6 a). Near the cut-off wavenum-
ber, the decline is again stronger than α−7 due to the dissipation of the nu-
merical scheme. Yet in normal direction, the transfer to viscous decay occurs
for β > 8. Thus, the mixing layer’s turbulence is not isotropic and generally,
the resolution in normal direction should be finer than in streamwise direction.
Note that the cut-off wavenumber in figure 7.6 b) is somehow arbitrary since
the data is interpolated on a mesh with constant ∆y = 0.133 to enable the
Fourier analysis.

The maximum amplitudes of the normal velocity component along y are shown
in figure 7.12 a) for two-dimensional disturbances. Since the initial mixing layer
is not laminar as in the cases considered before, the amplitude distribution is
less distinct, showing short-wavenumber variations. In the turbulent boundary
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layer, fluctuations are in the range of |v̂| = 10−3 to 10−2. Behind the trailing
edge, higher harmonics (3, 0) and (4, 0) grow strongly up to 50 < x < 60
where they saturate. This position corresponds to the first accumulation of
small eddies found in figure 7.9. Further downstream, the two-dimensional
fundamental mode grows. The increase of its first higher harmonic is inhibited
at a level of |v̂| ≈ 10−2. Saturation of (1, 0) occurs at x ≈ 200 where the first
vortex-like coherent structure is visible in figure 7.9.
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Figure 7.12: a) Maximum amplitude of the normal velocity along y for two-
dimensional disturbances (h, 0).
b) Vorticity thickness 〈δΩ〉 of the mean flow and resulting fre-
quency of the most-amplified disturbance by Michalke [68].

For further understanding, the vorticity thickness of the time and spanwise av-
eraged flow field according to equation (4.1) is considered. It is given in figure
7.12 b) together with the frequency of the most-unstable disturbance according
to the inviscid linear analysis of Michalke [68]. At the beginning, disturbances
in the range of 3ω0 to 4ω0 are most amplified as found in figure 7.12 a). Also
the locations of the incipient growth of the fundamental disturbance at x ≈ 100
and its first higher harmonic at x ≈ 60 correspond to the findings of Michalke.
Thus, the growth of two-dimensional modes (h, 0) is due to the linear insta-
bility of the mean flow although no clearly separated scales exist. Near the
end of the integration domain, the amplitudes of various subharmonics and
the first higher harmonic increase rapidly. Despite the thicker mixing layer,
growth rates are larger for the fundamental mode. Hence, this is no more due
to the inflection point of the mean flow but rather some secondary instability
mechanism.
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The amplitudes of oblique modes are given for one and two times the funda-
mental spanwise wavenumber in figures 7.13 a) and b), respectively. In the
turbulent boundary layer (x < 0), they are larger than their two-dimensional
counterparts by a factor of approximately two. Behind the trailing edge, bumps
of modes (1, k) to (4, k) exist at similar locations as for the corresponding two-
dimensional disturbances. Since disturbances are less amplified for increasing
spanwise wavenumbers (see e.g. figure 4.4 b), the growth of oblique modes
is less intense than in figure 7.12 a). An exception is mode (2, 1), reaching a
maximum of |v̂| ≈ 2.5 · 10−2 around x = 120 before it decays again. The mean
exponential growth of subharmonic oblique waves is quite constant along x.
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Figure 7.13: Maximum amplitude of v along the normal direction for oblique
modes: a) (h, 1) and b) (h, 2)

The resulting acoustic field at z = 0, visualized by dilatation in the range of
∇u = ±5 · 10−4 is given in figure 7.14 for four different time levels. Being part
of the introduced perturbations, the downstream travelling acoustic source of
the turbulent boundary layer (figure 7.7) appears as well with the fundamental
frequency. It generates circular acoustic waves in the upper part of the do-
main. When reaching the trailing edge, a circular pulse with short-wavelength
fluctuations is emitted towards the low-speed stream. Due to diffraction in the
mixing layer, an additional wave front appears below the mixing layer. A uni-
form directivity is observed in the fast stream while acoustic waves in the lower
half of the domain have a maximum for ϕ ≈ 45◦. Sound running perpendicular
to the flow speed is rapidly dissipated.
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a) b)

c) d)

Figure 7.14: Acoustic field at z = 0, visualized by snapshots of the dilatation in

the range of ∇u = ±5 · 10−4. Time levels are t = 1780.2, 1806.4,
1832.6 and 1858.8 for a) to d), respectively.

Between two dominant sources, less intense acoustic waves are also emitted
from the trailing edge. Yet they are of smaller amplitudes and strongly dissi-
pated due to their short wavelengths. The acoustic wave in the upper half of
the domain travels faster than in the low-speed stream because of the different
freestream velocities. Thus, the position of the upper wave front is further
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downstream compared to the one below the mixing layer. With increasing x-
coordinate, the streamwise traveling acoustic source is dissipated and finally,
no relevant acoustic emissions are found in the fast-speed stream, see figure
7.14 d). Since no additional damping zone is applied to the one-dimensional,
characteristic inflow boundary of the low-speed stream, some minor reflections
are visible there, e.g. at y = −90 in figure 7.14 a). Yet these are relatively
small and hence do not spoil the result. Note that artificial sound is generated
neither by the turbulent inflow boundary condition nor by the sponge zone of
the outflow.

The characteristic of the emitted sound is considered in figure 7.15 by the
pressure fluctuations at an exemplary position in the low-speed stream. The
coordinates of the virtual microphone are x = 195, y = −121.8, z = 0, being the
same as for the temporal pressure spectrum in figure 6.18. Since the acoustic
field is dominated rather by pulses than pure sinusoidal waves, the temporal
pressure variation is given. Pressure peaks with a deflection of p′ ≈ 0.006
are visible at t ≈ 1230, 1440, 1650 and 1860. Their interval is equivalent to
the period of the fundamental frequency. The variation between two peaks is
p′ ≈ 0.0015 and hence being quieter by 12 dB.
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Figure 7.15: Time-dependent signal of the pressure fluctuations along 4 periods
of the fundamental frequency. The virtual microphone is located
at x = 195, y = −121.8, z = 0.

Apart from the downstream propagating noise source of the upper boundary
layer, the turbulent mixing layer is remarkably quiet. Following the findings
of chapter 4, this is due to the low amplitudes of the respective subharmonics,
given in figure 7.12 a). This is the case for the maximum of high-frequency
modes (3, 0) and (4, 0) as well as for the two-dimensional fundamental distur-
bance.
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8 Conclusions and Outlook

The aim of the present work is the investigation of sound-generation mecha-
nisms in the mixing layer of a jet with subsonic flow speeds. To avoid modeling
of fluid-mechanic processes, direct numerical simulation (DNS) is applied for
both, the flow field and the acoustic farfield. Since the amplitudes of the emit-
ted sound are substantially smaller than hydromechanic fluctuations, a highly
accurate numerical scheme with appropriate boundary conditions is mandatory.

The presented DNS-code is based on sixth-order compact finite differences and
a spectral discretization in spanwise direction, allowing spanwise symmetric
and non-symmetric simulations. Non-uniform grids are implemented to com-
pute the acoustic farfield efficiently. The code can be run on multiple processors
by means of shared-memory parallelization in spanwise direction and domain
decomposition in streamwise and normal direction. Beyond increasing per-
formance, the combination of domain decomposition and grid transformation
allows to simulate a wide range of configurations. The method is verified by
comparison with linear stability theory, reference cases including aeroacous-
tic problems, and statistical data for turbulent flows. The combination of
DNS-code, linear stability theory, pre- and postprocessing provides a complete
simulation framework for unsteady compressible flows. Despite DNS-code and
linear-stability solver being new developments, it should not be forgotten that
their successful implementation is also based on the work and experience of
many others at the Institut für Aerodynamik und Gasdynamik throughout
several years.

The core of this thesis is dedicated to aeroacoustic sound generation in mixing
layers, which are a model for the initial part of a jet. The investigations are
arranged such that the complexity of the simulations is successively increased,
ranging from rather generic cases to more realistic configurations for “real-
world” jets.

The fundamentals of aeroacoustic noise generation are investigated for a pure
mixing layer which is forced with defined disturbances. Due to the inflection
point of the velocity profile, disturbances are highly amplified, leading to a roll-
up of the mixing layer with subsequent vortex pairing. The mechanism of vortex
pairing can be explained by subharmonic resonance, meaning that the phase
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speed of the respective subharmonic adapts to that of the currently dominant
mode. Thus, the relative phase shifts of the introduced disturbances and not
only their amplitudes are decisive for the modes’ strength at a specific stream-
wise position. In case of an additional spanwise deformation, counter-rotating
streamwise vortices occur and the growth of two-dimensional low-frequency
modes is reduced. The interaction of streamwise vortex tubes and streamwise
rollers yields a breakdown of the large-scale Kelvin-Helmholtz vortices. The
main acoustic emission of a mixing layer is directed in downstream direction.
It is caused not only by vortex pairing but requires the presence of notable
subharmonics. Hence, it is possible to reduce the downstream directed sound
by simply altering the phase of the corresponding low-frequency mode. Three-
dimensional structures transform the originally tonal sound to broadband noise.
In case of inhibited resonance, additional sound is generated in upstream di-
rection.

By adding a splitter plate representing the nozzle end, a more realistic con-
figuration is obtained which includes the initial region of the mixing layer.
Furthermore, this setup allows the placement of wall-mounted actuators for
flow control. Due to the thicknesses of the two different boundary layers on
both sides of the flat plate, a combination of wake and mixing layer occurs.
Further downstream, the flow field is dominated by vortex ejection and pairing
similar to the Blasius mixing layer considered before. However, some random
behavior can be observed and the flow is no longer completely periodic. This
indicates that new instability waves are generated by upstream traveling acous-
tic waves impinging on the trailing edge of the splitter plate. Accordingly, a
higher level of undisturbed subharmonics is found for an increased thickness of
the splitter plate. Up to moderate thicknesses the process of sound generation
stays the same. Hence, the computationally more convenient thin trailing edge
is a justified approach.

A first attempt to reduce the noise emission is a spanwise deformation of the
splitter plate’s trailing edge. Two cases with a rectangular and a nonsymmetric
notch are computed and compared with a straight trailing edge. The spanwise
extent is the same for both serrations and chosen such that it corresponds ap-
proximately to a 45◦ waveangle for the introduced Tollmien-Schlichting wave.
Inside the notch, the mixing layer begins earlier, resulting in a spanwise modu-
lation of the Kelvin-Helmholtz vortices. Streamwise vortex tubes are generated
at the sharp edge of the Kelvin-Helmholtz deformations and directed towards
the spanwise position of the notch. Large structures which are observed for the
straight trailing edge are replaced by small-scale eddies. These are still aligned
in groups with a distance corresponding to the Kelvin-Helmholtz vortices of
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the straight trailing edge. The sound emission of the dominant lower frequen-
cies is reduced substantially. On the other hand, noise with higher frequencies
is partly increased. Yet a sustained reduction of some 10 decibel can be ob-
served for both serrations. An ostensive explanation is the replacement of the
merging Kelvin-Helmholtz vortices by small scale structures. Alternatively, one
may state decreased subharmonics to be responsible for the reduction of low-
frequency noise, following the results of the pure mixing layer. For a constant
spanwise extent, the actual shape seems to be of minor importance. Despite
some major changes of the shape, symmetric to non-symmetric and rectangular
to aslope, basically the same noise reduction can be observed.

In most “real-world” applications, jets are turbulent. In the simulation, this is
realized by prescribing unsteady data at the inflow. The time-history of all flow
quantities is extracted from a precursor DNS of laminar-turbulent transition
in a flat-plate boundary layer. Due to the streamwise length of the integration
domain, only the roll-up and not the pairing of turbulent Kelvin-Helmholtz
vortices is captured by the simulation. Thus, the focus is set on trailing edge
noise and the initial development of a turbulent mixing layer, here. It is domi-
nated by small-scale turbulent structures forming larger Kelvin-Helmholtz-like
structures. Despite no separate scales exist, the roll-up of the mixing layer is
a linear mechanism, driven by the inflection point of the mean velocity profile.
The simulation shows the dominant noise due to an acoustic source in the tur-
bulent boundary layer. When reaching the trailing edge, it emits an acoustic
pulse towards the low-speed stream. While traveling further downstream, the
source is dissipated in the turbulent mixing layer.

The performed simulations allow to distinguish three types of sound generation
mechanism in a mixing layer:

• vortex pairing:
In combination with notable subharmonics, vortex pairing is the strongest
acoustic source in a mixing layer, generating downstream-directed sound

• suppressed resonance:
When adaptation of the phase speed is inhibited, upstream-directed sound
is emitted into the fast stream, hence inside the jet. The actual directivity
depends on the Mach number of the fast stream.

• trailing-edge noise:
This is mainly due to downstream traveling acoustic sources inside the
jet. Apart from this, the sound generation at the trailing edge is weak
and rapidly dissipated due to its short wavelength.
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Outlook on Future Research

Of course, the DNS-code is not limited to jet noise. Future research may fo-
cus on simulating a complete airfoil as done by Sandberg et al. [84], Marsden
et al. [64] and Jones et al. [47]. Thereby it is of special interest how dis-
turbances are generated at the leading edge by upstream propagating acoustic
waves. Direct numerical simulations may clarify whether freestream turbulence
or self-induced disturbances trigger laminar-turbulent transition. Currently,
first experience at IAG is gained in this field [88]. Generally, the code may
be applied to the wide range of laminar-turbulent transition and flow control
in sub-, trans- and supersonic regimes. When it comes to strong shocks, the
implementation of a shock-capturing method will be necessary.

Future simulations of turbulent mixing layers may be extended to include the
pairing of two turbulent vortices. Beyond an increased streamwise extent of
the integration domain, a better spanwise resolution seems to be favorable.
Furthermore, the influence of the spanwise extent of serrations should be in-
vestigated. This may yield some guidelines for the design of an optimally
engrailed trailing edge. Beyond serrations, other active or passive actuators
may be placed at the wall. With the current knowledge, fluid ejection or
streamwise-vortex generators, either active or passive, seem to be methods for
jet-noise reduction, worth to be investigated. Since instantaneous flow variables
are available at each location, also some feedback control may be implemented
where the actuator at the wall is triggered by some sensor, e.g. a microphone.
Yet a useful realizable control law remains an open issue.

In principle, it might be possible to adapt the phase of subharmonics such that
resonance is inhibited and their amplitude at the position of vortex pairing is
reduced. According to the findings for the pure mixing layer, this seems to
be a promising approach, having no penalty in terms of additional high fre-
quency noise. Yet a wide range of low-frequency disturbances and not only
the exact subharmonic of the merged vortex must be controlled in a practical
implementation. This seems to be quite difficult because of i) the unknown
disturbance spectrum and ii) the feedback mechanism which generates new in-
stability waves. The reduction of trailing edge noise requires the elimination of
acoustic sources in the boundary layer. Due to the presence of a wall, various
actuators are conceivable for this.



A Finite Differences on Non-Uniform Grids

Some people may denote the investigation of numerical properties to be simple
analysis. However, designing a numerical scheme without knowing the oc-
curring discretization effects may cause unphysical results, hence querying the
scientific outcome of such simulations. In this context, the effect of non-uniform
grids is investigated theoretically and by means of numerical tests.

Three principal methods for finite difference discretization on non-uniform grids
are considered. The first way is to use a biased stencil where the coefficients
of the finite difference depend on the coordinates of the involved grid points,
see e.g. Shukla & Zhong [90]. This has to be done once after the grid has been
defined. The other two implementations are based on a transformation of the
physical non-uniform grid to a computational equidistant grid. For the one-
dimensional case, the transformation (3.9) for the first and second derivatives
simplifies to

∂
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∂ξ
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with the metric coefficients ∂x/∂ξ and ∂2x/∂ξ2 defined by the transformation
x = x(ξ). Being derivatives in computational space, the metric coefficients
can be computed either numerically using the same procedure as for the flow
variables or analytically if the transformation x(ξ) is given analytically.

Visbal & Gaitonde [101] have shown the practical application of finite differ-
ences on deformed meshes using grid transformation with high-order schemes
providing better results than a low-order discretization. The effect of skewed
meshes was studied by You et al. [108]. They found large numerical dissipation
on skewed grids which may negatively affect the stability of the computation.
A special implementation of curvilinear meshes is proposed by Zhong & Tatieni
[109]: the actual stretching is included in the coefficients of the stencil and grid
transformation is used only for the bending of the mesh.
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A.1 Modified-Wavenumber Analysis

The principles of different implementations of non-uniform grids are investi-
gated theoretically using the classical wavenumber analysis [55, 58], There, one
considers the one-dimensional advection-diffusion equation

∂u

∂t
+ c · ∂u

∂x
= d · ∂

2u

∂x2
, c, d ∈ R ∧ ≥ 0 (A.3)

on a periodic or infinite domain in x-direction with constant diffusion and
convection speed. The evaluation of the spatial discretization is based on a
wave with the wavenumber k, allowing an arbitrary phase Θ:

u(x) = <
“
ei(k·x+Θ)

”
= cos(k · x+ Θ) . (A.4)

The dispersion/dissipation properties on uniform meshes can be found in sec-
tion 3.3.1. To evaluate the properties of FDs on a non-uniform physical grid,
the biased stencils or the metric coefficients need to be taken into account.
Therefore, a specific grid stretching has to be defined with the analysis being
only valid for this type of mesh. To achieve generally valid results, a generic
function x(ξ) is desirable. In contrast to the uniform grid, an analytical ap-
proach providing wavenumber diagrams as in figures 3.2 and 3.3 is now only
possible for explicit finite differences. Due to the varying resolution, the qual-
ity of the computed derivative differs at the neighboring points. An analytical
expression of the modified wavenumber is no more possible without specifying
the mesh on the whole computational domain. Thus, the properties of compact
FDs have to be investigated using a numerical experiment, as done in section
A.2.

The probably most generic grid transformation is a continuous increase or
decrease of the grid spacing ∆x in physical space which can be expressed by
an exponential function:

x(ξ) = ec·ξ ,
∂x

∂ξ
= c · x , ∂2x

∂ξ2
= c2 · x , (A.5)

where c determines the strength of the continuous stretching. Multiplication
with the step size in computational space, ∆ξ, gives the non-dimensional pa-
rameter c∗ = c·∆ξ. With the analytical grid stretching we can define a reference
step size in physical space

∆xref =
∂x

∂ξ

˛̨̨̨
an.

·∆ξ = c∗ · x (A.6)
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which is used to obtain the non-dimensional wavenumber k∗ = k ·∆xref . Note
that half the grid spacings of a “centered” stencil are smaller or larger than
∆xref , respectively. With the coordinates based on equation (A.6), we obtain
the values of the considered wave:
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For biased finite differences, the spatial derivatives are computed directly in
physical space

∂u

∂x
w a · uj−2 + b · uj−1 + c · uj + d · uj+1 + e · uj+2 (A.8)

with the coordinates being included in the coefficients. Their derivation is
based on a Taylor-series expansion at the considered point xj . For simplicity
we may define the local step sizes at

∆xm2 = xj − xj−2, ∆xm1 = xj − xj−1,

∆xp1 = xj+1 − xj , ∆xp2 = xj+2 − xj (A.9)

to express the coefficients of the biased explicit finite differences for the first
and second derivatives given in tables A.1 and A.2, respectively. For the par-
ticular case of an equidistant grid, the values of equation (A.9) are
∆xm2 = ∆xp2 = 2 ·∆x and ∆xm1 = ∆xp1 = ∆x. This results in the well-
known standard FDs.

In case of grid transformation, the grid is considered in terms of metric coef-
ficients and not by the stencil of the finite difference itself. For the evaluation
of metric coefficients and spatial derivatives in computational ξ-space, stan-
dard finite differences are used. The resulting metric terms are provided by
equations (A.10)-(A.11) and (A.12)-(A.13) for analytical and numerical grid
transformation, respectively:

∂x

∂ξ an.
= c · x =

∆xref
∆ξ

(A.10)

∂2x

∂ξ2
an.

= c2 · x = c∗
∆xref
∆ξ2

(A.11)

∂x

∂ξ num.
= ∆xref

“
a · e−2c∗ + b · e−c

∗
+ c + d · ec

∗
+ e · e2c∗

”
(A.12)

∂2x

∂ξ2
num.

= ∆xref
“
a · e−2c∗ + b · e−c

∗
+ c + d · ec

∗
+ e · e2c∗

”
.(A.13)
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With the derivatives in physical space, the modified wavenumber and its square
can be easily computed from equation (3.1) and (3.2). The real and imaginary
parts of the modified wavenumber k∗mod and the wave number square k∗2mod are
considered for two exemplary grid-stretching factors c∗ = 1 and c∗ = 0.3. They
correspond to an increase of the physical step size ∆x by a factor of e = 2.718
and 1.35, respectively. Thus, the resolution of a wave at the outer left and right
grid points of a five-point stencil differs by a factor of 20 for c∗ = 1. Despite
one would not choose such a strong stretching for real applications, it clearly
demonstrates the properties of the three different discretization methods on
non-uniform grids.

The real and imaginary parts of the modified wavenumber k∗mod of the first
derivative based on three- and five-point stencils are shown in figure A.1 and
A.2, respectively. The range of normalized wavenumber 0 ≤ k∗ ≤ π in the plots
is somewhat arbitrary. With the wavenumber k being normalized with ∆xref ,
the value k∗ = π does not correspond to the least resolved wave as it is known
from equidistant grids. Using the locally varying stepsize ∆x, the resolution
may be expressed in terms of points per wavelength λx:

npoints
λx

=
2π

k ·∆x =
2π

k∗ · ∆x
∆xref

. (A.14)

The value of k∗ = π being the abscissa’s maximum value in the diagrams cor-
responds to a number of points per wavelength of 8.6, 3.2, 1.2 and 0.4 for the
physical stepsizes (xj−1 − xj−2), (xj − xj−1), (xj+1 − xj) and (xj+2 − xj+1),
respectively. For smaller values of c∗, the variation decreases. Independently
of c∗,

npoints
λx

for k∗ = π is larger than two for the first two points and smaller
than two for the two right points of the stencil. Equation A.1 reveals that
the first derivatives in physical space based on analytical and numerical met-
ric coefficients simply differ by the factor of the differently computed metric
terms. Thus, this is also the case for real and imaginary parts of the modified
wavenumber.

First Derivative based on 3-Point Stencil

As one can see in figure A.1 a), the biased finite difference provides the best
dispersion properties for the three-point stencil on the exponentially stretched
grid with c∗ = 1. Compared to analytically and numerically computed metric
coefficients, the characteristic of the biased discretization differs less from the
exact solution k∗mod,r,exact = k∗. The analytical metric coefficients result in
higher values for both real and imaginary parts of the modified wave number
than the numerically computed metrics. In case of analytical metric coefficients,
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the increase ∂k∗mod,r/∂k
∗ of the modified wavenumber is slightly too large for

well resolved waves. For numerically computed metric coefficients, good wave
propagation properties are achieved up to k∗ ≈ 0.6. Aliasing occurs for both
grid-transformation methods for values k∗ > 1. If a biased FD is used, the
imaginary part k∗mod,i of the modified wave number becomes negative (figure
A.1 b). Thus, waves traveling in the direction of grid coarsening are successively
damped. For the methods involving metric terms, these waves are amplified
with increasing wave number up to k∗ ≈ 2.7. Less resolved waves (k∗ > 2.7)
are slightly damped.
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Figure A.1: Real and imaginary parts of the modified wave number k∗mod for
stretching factors c∗ = 1.0 and c∗ = 0.3 using explicit finite differ-
ences based on 3-point stencils.
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For the weaker stretching c∗ = 0.3, real and imaginary parts of the modified
wave number are given in figures A.1 c) and d), respectively. Now, all three
methods provide similar results for the real part k∗mod,r with the dispersion

relation being almost equal to 2nd-order FDs on a uniform mesh (see figure
3.2). The limiting factor for the accuracy is the imaginary part k∗mod,i. In case
of grid transformation, notable amplification for waves in the direction of grid
coarsening exists. Also for smaller stretching ratios, this can not be neglected:
e.g. a stepsize increase of 10% (c∗ = 0.1) yields a maximum of k∗mod,i = 0.09.

First Derivative based on 5-Point Stencil
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Figure A.2: Real and imaginary parts of the modified wave number k∗mod for
stretching factors c∗ = 1.0 and c∗ = 0.3 using explicit finite differ-
ences based on 5-point stencils.
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For the larger stencils, again the biased FD gives the best results in terms of
wave propagation, as shown in figure A.2 a) for c∗ = 1. The difference be-
tween analytically and numerically evaluated metrics is less obvious than for
the discretization based on second order FDs. The absolute values of the real
and imaginary parts are slightly larger for the numerical grid transformation.
Now, acceptable wave propagation properties are possible only up to k∗ ≈ 0.3.
This smaller value compared to the three-point stencil is due to the fact that
a stronger grid stretching is included in the stencil with the outer point xj+2

of the FD. Like for the three-point stencil, poorly resolved waves are damped
for the 4th-order biased discretization as they propagate in the direction of
coarsening since k∗mod,i,biased < 0. This is also the case for grid-transformation
methods in the range of 0.4 < k∗ < 2.7. Waves with smaller wave numbers
are only slightly amplified compared to the least resolved waves exhibiting a
distinct amplification.

The case of a weaker stretching (c∗ = 0.3) is shown in figures A.2 c) and d).
Now, the 5-point stencil provides a better result than the 3-point stencil in
contrast to c∗ = 1. The value c∗ ≈ 0.4 (50% increase of step size) was found to
be the limit for the 5-point stencil to be more accurate than the 3-point stencil.
Compared with figure 3.2 a), the dispersion properties for c∗ = 0.3 are already
quite similar to the equidistant spacing. With k∗mod,i,min = −0.52 for biased
FDs and k∗mod,i,min = −0.19 for both grid-transformation methods, dissipation
is still a relevant issue. Thus, damping is only weakly affected by coarsening
of the grid. An acceptably low damping (|k∗mod,i| < 0.1) for relatively well-
resolved waves (k∗ < π/2) is observed for c∗ ≈ 0.1 (step size increase by 10%).

Order of First Derivatives

The order of a scheme describes how the leading discretization error is reduced
with increased resolution. The relative error of the first derivative can be
expressed by the modified wave number to

ε =

˛̨̨̨
˛̨̨̨
r“

k∗mod,r

”2

+
“
k∗mod,i

”2

− k∗

k∗

˛̨̨̨
˛̨̨̨ . (A.15)

Its dependence from the resolution, expressed by the number of grid points per
wavelength (= 2π/k∗), is shown in figure A.3 a) for the 3-point stencil with
c∗ = 0.3. Increasing the resolution by a factor of four reduces the error to one
fourth in case of biased FDs and numerical metric coefficients. Thus, these
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methods are of second order as it is the case on equidistant grids. With its
error being limited to ε = 0.015, the method of analytically computed metric
coefficients is of zeroth order.

Figure A.3 b) shows the corresponding results for the five-point stencil. Again,
the biased FDs are of the same order (O4) as on uniform grids. In case of
numerically computed metrics, the error decays like for the 3-point FD. Thus,
a larger stencil does not increase the order, rather the magnitude of the error
is decreased. The error of analytical metric terms is bound to ε = 2 · 10−4.
Despite the error is reduced, it is still of O0.
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Figure A.3: Relative error of the first derivative versus the resolution for stetch-
ing factor c∗ = 0.3): a) 3-point stencil, b) 5-point stencil.

The kink in the error for analytically computed metrics occurs where errors
of the real and imaginary part cancel each other. Hence, considering only the
order of a scheme provides less information compared to the modified wave
number analysis. In general, the order is defined as

O = − ∂ {log(ε)}
∂ {log(pts/λ)} . (A.16)

Its dependence from the stretching factor is shown in figure A.4 for the 5-point
stencil and k∗ = 0.311 (20pts/λ). For vanishing grid stretching (c∗ → 0),
numerical metric coefficiens result in the fourth order known from the uniform
mesh. At c∗ = 0.06, a pole exists where amplitude and phase errors cancel
each other. Then the scheme decreases to second order.

It is quite astonishing that the numerical metric coefficient provides a better
result. Obviously, discretization errors of the derivative in computational space
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Figure A.4: Discretization order O of the first derivative’s 5-point stencil as a
function of the stretching factor c∗ (20pts/λ).

and of the metric coefficients cancel each other. A remarkable fact is also that
an increased stencil does not increase the order on the non-uniform grid to
more than two. However, the leading error is only in the imaginary part for
numerically computed metrics, resulting in an exact group velocity of up to
second spectral order.

Second Derivative based on 3-Point Stencil

The computation of the second derivative with a second-order biased FD gives
the best accordance with the exact solution k∗2 for the real part of the modified
wave number square, given in figure A.5 a) for c∗ = 1. Using numerical metric
coefficients gives a similar result. However, deviation from the exact solution
occurs for smaller values of k∗, and the maximum value of k∗2mod is roughly 20%
smaller than for the biased finite difference. The imaginary part is slightly
smaller, thus less artificial convection is generated than is done by the biased
FD. In the case of analytically computed metrics, the characteristics of k∗2mod
differs from the exact solution for the real and imaginary parts already for very
small values of k∗. All three methods cause a positive value of k∗2mod,i (figure
A.5 b) and thus an artificial advection in the direction of grid coarsening.
For the weaker stretching c∗ = 0.3, the real parts k∗2mod,r collapse for the three
methods as shown in figure A.5 c). Similar to the stronger stretching, a positive
value of k∗2mod,i is obtained for all methods (figure A.5 d). Biased FDs and
numerical metric provide almost the same results, here. The value c∗ = 0.3 is
approximately the limit of acceptable accuracy for appropriately resolved waves
(k∗ < π/2) if biased FDs or numerically computed metric coefficients are used.
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Analytical metrics are an exception here, since notable values of k∗2mod,i exist
even for low stretching ratios and small values of k∗.
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Figure A.5: Real and imaginary parts of the modified wave number square k∗2mod
for stretching factors c∗ = 1.0 and c∗ = 0.3 based on 3-point stencil.

Second Derivative based on 5-Point Stencil

For the 5-point stencils applied to the stretching factor c∗ = 1, the real parts
of the modified wave number square show a better agreement with the exact
solution than the 3-point stencil for all three methods (figure A.6 a). At small
values of k∗, the weakest deviation is given for the biased finite difference.
Its value grows up to k∗ = 2.25 and decreases above. For the two methods
using grid transformation, higher values of k∗2mod,r are reached, remaining almost
constant for poorly resolved waves. The imaginary part, given in figure A.6 b),
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differs for biased FDs and grid transformation methods. For the latter, k∗2mod,i
increases up to k∗ ≈ 2.8, meaning an artificial convection in the direction of
grid coarsening.
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Figure A.6: Real and imaginary parts of the modified wave number square k∗2mod
for stretching factors c∗ = 1.0 and c∗ = 0.3 based on 5-point stencil.

If the biased FD is used, first, the imaginary part slightly increases. For higher
wave numbers, k∗2mod,i declines to negative values for k∗ > 2.1 meaning an arti-
ficial advection in the direction of grid refinement. Unlike the first derivative,
the 3-point stencil does not provide better results than the 5-point stencil when
grid transformation is applied to the strong stretching ratio c∗ = 1.

The case of weaker grid coarsening (c∗ = 0.3) is shown in figures A.6 c) and A.6
d) for the real and imaginary parts of the modified wavenumber square k∗2mod,
respectively. The real part is almost the same for all three methods. Unlike
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for the stronger step-size ratio c∗ = 1, biased FDs provide a positive value of
k∗2mod,i similar to the grid-transformation methods. Thus, all three implemen-
tations of non-uniform grids induce an artificial advection in the direction of
grid coarsening, here. Considering well-resolved waves (k∗ < π/2), acceptable
accuracy is achieved up to c∗ ≈ 0.3 as shown by figures A.6 c) and A.6 d).

Order of Second Derivatives

For the seond derivatives, the relative error is given by

ε =

˛̨̨̨
˛̨̨̨
r“

k∗2mod,r

”2

+
“
k∗2mod,i

”2

− k∗2

k∗2

˛̨̨̨
˛̨̨̨ (A.17)

which is shown in figures A.7 a) and b) for the 3- and 5-point stencils, respec-
tively. Plotted versus the number of grid points per wave length, it allows to
determine the order as done for the first derivative.
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Figure A.7: Relative error of the second derivative versus the resolution for
stretching factor c∗ = 0.3): a) 3-point stencil, b) 5-point stencil.

For the 3- and 5-point stencils, the biased FDs are of second and fourth or-
der, respectively. The error of numerical metric coefficients slightly reduces
reaching its final level of ε = 2 · 10−2 and ε = 2 · 10−3 for the 3- and 5-point
stencils, respectively. Hence, the increased stencil reduces the overall error by
one magnitude. For well resolved problems, the order of the second derivative
computed by numerical metric coefficients is of zeroth order independently of



156 A Finite Differences on Non-Uniform Grids

the involved grid points. With an increasing error, the 3-point stencil provides
inconsistent results. Yet this is not the case for the 5-point FD whose error
behaves similar to one with the numerical metrics. The order according to
equation (A.16) is shown in figure A.8 as a function of the stretching factor
c∗ for k∗ = 0.311. On almost uniform grids (c∗ → 0), the order of all three
methods is consistently four. For stretching factors c∗ > 0.2 the order of both
grid transformation methods reduces linearly with c∗.
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Figure A.8: Discretization order O of the second derivative’s 5-point stencil as
a function of the stretching factor c∗ (20pts/λ).

A.2 One-dimensional Numerical Investigation

Numerical Scheme

To investigate the effects of grid stretching for compact finite differences, we
have to rely on numerical experiments. Therefore, the one-dimensional linear
advection-diffusion equation (A.3) is solved in a periodic domain x ∈ [0;xend[
with constant diffusion and advection speed. The initial condition and the
resulting exact solution for this partial differential equation are given by equa-
tions (A.18) and (A.19), respectively, where α0 = 2π/xend is the fundamental
wavenumber and αk = α/α0 the number of wavelengths in the domain:

u(t=0) = cos (α · x) (A.18)

uexact = e−d·α
2·t · cos (α[x− c · t]) . (A.19)

Time integration is done using the classical 4th-order Runge-Kutta scheme
(section 3.3.2). The spatial discretization is based on compact finite differences



A.2 One-dimensional Numerical Investigation 157

of 4th order. For the first and second derivatives, the coefficients of the biased
compact scheme are given by Shukla & Zhong [90]. For equidistant grids, the
stencils for first and second derivatives reduce to

u′j−1 + 4u′j + u′j+1 =
3

∆ξ
(uj+1 − uj−1) (A.20)

u′′j−1 + 10 · u′′j + u′′j+1 =
12

∆ξ2
(uj+1 − 2uj + uj−1) , (A.21)

respectively. These stencils are the standard 4th-order compact schemes with
the constant step size ∆ξ. The term “standard” means that the order is max-
imal for the stencil width. In case of grid transformation, the physical non-
uniform grid is mapped on an equidistant computational grid. Spatial deriva-
tives in physical space are then computed by equations (A.20) and (A.21) using
the derivatives in computational space and multiplying them with the corre-
sponding local metric coefficients at point xj , given by equation (A.1) and
(A.2). Additionally, explicit finite differences as discussed in section A.1 are
implemented to see the difference between explicit and compact discretization
on non-uniform grids.

Results

The used grid is stretched in the first half of the domain according to the
transformation given below:

x(ξ) =
1 + s

2
· ξ +

s− 1

2b
· [ln(cosh(b(ξ − ξ1)))− ln(cosh(−bξ1)))] (A.22)

∂x

∂ξ
=

s− 1

b
· tanh(b(ξ − ξ1)) +

1 + s

2
(A.23)

∂2x

∂ξ2
=

b(s− 1)

2
− b(s− 1) sinh(b(ξ − ξ1))2

cosh(b(ξ − ξ1))2
. (A.24)

In order to have an almost sudden coarsening of the grid given by an analytical
function, the metric coefficient ∂x/∂ξ is modelled by a tanh function. The grid
stretching is defined by the ratio s = ∆xmax/∆x0. The mesh starts with the
regular stepsize ∆x0, increasing to the coarse ∆xmax at the position ξ1. The
parameter b defines how fast the stepsize is increased: large values of b com-
press the tanh profile of ∂x/∂ξ leading to a sharp switch from fine to coarse
spacing. The following refinement of the grid is done accordingly.

For the current investigation a computational grid with 100 points and a regular
spacing of ∆x0 = ∆ξ = 0.03141 has been used. In half the domain, the
spacing is ∆x = 4 · ∆x0 with s = 4. The stretched area is located in the
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middle of the domain with ξ1 = 1/4ξend (x1 = 0.8) and ξ2 = 3/4ξend (x2 =
7.0) being the begin of coarsening and refinement, respectively. With b =
100, a rapid transition between the different stepsizes is achieved. The total
length of the domain is 7.8525, resulting in a fundamental wavenumber α0 =
0.8 of the domain. Figure A.9 shows the grid transformation x(ξ) and the
metric coefficients xξ = ∂x/∂ξ and xξξ = ∂2x/∂ξ2 for analytical and numerical
evaluation.
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Figure A.9: Grid transformation x(ξ) with the corresponding metric coefficients
xξ and xξξ. The black solid line corresponds to the analytical
metric coefficients. The numerically computed metric terms are
given by the thin grey line with the discrete grid points indicated
by dots.

The effect of different grid-stretching mechanisms is investigated by computing
(i) a pure convection case (c = 1, d = 0) and (ii) a pure diffusion problem
(c = 0, d = 1). The initial condition of both cases contains nα = α/α0 = 4
wavelengths inside the domain. With the non-dimensional wave numbers k∗ =
α · ∆x = 0.025 and k∗ = α · s∆x = 0.1, the wave is well resolved with 250
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and 62.5 points per wavelength in the fine and coarse regions, respectively.
Therefore, the change of the grid and not the actual resolution mainly effects
the accuracy of the result here. The time steps are ∆t = 0.015705 and ∆t =
0.0001353 for the advection and diffusion problem, respectively. In case of
the pure advection, the wave of the initial condition is resolved with 125 time
steps per period. With the high temporal resolution, effects due to the time-
integration scheme can be neglected. For both cases, a total number of 500 time
steps has been computed. The resulting computed time of the convection case
corresponds to one flow-through time of the domain. For the diffusion problem,
the amplitude is halved after the computed time steps. The exact solution is
shown in figure A.10 for both cases after the corresponding computed time.
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-0.5

0

0.5

1

Figure A.10: Exact solutions for the advection problem (solid line with circles)
and the diffusion problem (dashed line with triangles). The time
corresponds to one flow-through time and one half-life period,
respectively. The symbols refer to the grid points.

A.2.0.1 Advection Case

For the advection case, the quality of the computed first derivative is time
dependent. As the wave travels through the domain, the largest error occurs
when the maximum of the first derivative is located near positions of coarsen-
ing or refinement of the grid. Figure A.11 shows the temporal evolution of the
solution for 2nd-order explicit and 4th-order compact FDs, both for analytical
and numerical metric coefficients. During the temporal interval of 100 time
steps, shown here, the wave travels along a distance of 1.57. The compact
scheme provides an almost accurate solution with no observable differences be-
tween the two methods of grid transformation. The low-order methods show
the same phase error increasing with time.
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Figure A.11: Solution of the advection problem at various time steps. The
dotted line corresponds to numerical metric coefficients. The solid
and dashed lines refer to analytical metric coefficients based on
2nd-order explicit and 4th-order compact FDs, respectively.
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The difference between the two grid-transformation methods is the strong gen-
eration of wiggles for analytical metrics. They are firstly generated at the
coarsening of the mesh (x = 0.8). Having a negative group velocity, the wig-
gles move upstream and enter the domain at the right due to the periodicity of
the problem. Between time step 100 and 200, the region of refinement (x = 7.0)
is reached. Further on, the wiggles move into the coarse region and increase
furthermore, spoiling the solution.
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Figure A.12: Solution of the advection case based on 4th-order compact FDs:
a) time step 400 (80% of flow-through time), b) time step 500
(one flow-through time).
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Figure A.13: Result as figure A.12 but for 4th-order explicit FDs: a) time
step 400 (80% of flow-through time), b) time step 500 (one flow-
through time).
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For the compact 4th-order stencils, figures A.12 a) and b) show the different
solutions in the region of grid stretching at time step 400 and 500, respectively.
Time step 400 corresponds to u ≈ 0 and thus the maximum of |∂u/∂x| located
at the beginning of grid stretching. At both time steps, the solution of the
biased compact FDs and the numerical metric coefficients is similar. The com-
putation using analytical metric coefficients shows the worst results resulting
in wiggles in the area of fine grid spacing. For the computation using numerical
metric coefficients, wiggles are also present but much smaller.

In order to evaluate the difference between explicit and compact stencils for
this numerical example, equation (A.3) has been computed using the explicit
five-point stencils as well. In figures A.13 a) and b), the solution is shown for
time steps 400 and 500, respectively. The difference between the biased finite
difference, the analytical and the numerical grid transformation is similar to
the computation based on the compact scheme. The explicit stencils give a
larger wiggle mode which is most obvious at time step 400 for the analytical
metric coefficients.
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Figure A.14: Streamwise spectrum for the advection case, based on 4th-order
compact FDs: a) time step 400, b) time step 500.

Having a periodic domain, a Fourier analysis in x-direction is applied to eval-
uate the dispersion properties of the three grid-stretching implementations. In
figures A.14 a) and b), the streamwise spectrum is shown. The exact solu-
tion is a single amplitude of u = 1 at a spanwise wavenumber α/α0 = 4,
indicated by the dotted line in the spectra. At timestep 400, the analytical
metric coefficients give an amplitude of 4 · 10−2, almost constant along the
whole spectrum. After one whole flow-through time (time step 500), the high-
wavenumber amplitudes decrease to 5 · 10−3. For the lower wavenumbers, only
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a minor reduction occurs. The numerically computed metric coefficients lead
to a spectrum approximately one magnitude smaller for both time steps consid-
ered here. The biased scheme provides a smooth decay for high wavenumbers.
At low wavenumbers, the spectra of numerical metric coefficients and biased
compact finite differences are almost identical.

A.2.0.2 Diffusion Case

Without convection speed (c = 0), the time dependence of the accuracy of the
second derivative is only due to its decreasing amplitude. Thus, it is sufficient
to consider only one time step. Figure A.15 a) compares the solutions for
the compact scheme at time step 500, corresponding to one half-life period.
Both numerical metric coefficients and biased FDs give a good approximation.
For the analytical metric coefficients, the damping rate in the vicinity of the
coarsening of the grid is too small. In the highly resolved part of the domain,
shown in figure A.15 b), the damping rate is slightly too large. If the explicit
five-point stencils are used, no relevant difference to the compact schemes can
be observed.
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Figure A.15: a) Comparison of the three grid-stretching mechanisms (4th-order
compact FDs) for the diffusive case at time step 500 (one half-life
period), b) detailed view.

The instantaneous error |u−uexact| of the compact schemes is plotted in figure
A.16 a). The biased compact finite differences show the lowest error in the
range of 4 · 10−5 with the main derivation located in the stretched section of
the grid. Both analytical and numerical metric coefficients have a maximum
error of 8·10−2 and 4·10−3, respectively. The error peaks are at the locations of
coarsening and refinement while in the coarse region, the error is similar to the
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one of the biased FDs. The streamwise spectrum of the diffusion case is given
in figure A.16 b) where the exact solution u = 0.5 at α/α0 = 4 is indicated by a
dotted line. The spectra of the biased FDs and the numerical metric coefficients
show a smooth decay for the higher wavenumbers and the amplitudes of the
lower wavenumbers decline to values of 3 · 10−3. The numerically computed
metric coefficients show an additional oscillation for the higher wave numbers.
For the analytical metric coefficients, this oscillation is larger by almost one
order of magnitude and the low-wavenumber amplitudes decrease less.
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Figure A.16: a) Error of the three different grid stretching mechanisms at half-
live level for the diffusion case.
b) Streamwise spectrum for the diffusive case at time step 500.

A.3 Summary

Although one might think analytically prescribed metric coefficients are the
best choice, the theoretical analysis shows that this method is of zeroth order
on the physical grid or may even cause inconsistent results. Furthermore it
yields the wrong phase and group velocities even for arbitrarily resolved prob-
lems. In case of numerical metric terms, discretization errors of the derivatives
in computational space and of the metric coefficients seem to cancel each other.
The scheme is now of second and zeroth order on the non-uniform grid for first
and second derivatives, respectively. It is notable that the order can not be
increased but the magnitude of the error is decreased by a larger stencil. Biased
finite differences show always the same order as on equidistant grids.

In the numerical investigation, a rapidly changing resolution creates a broad
spectrum of artificial disturbances for all three methods. Numerical metric
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coefficients show almost the same behavior as biased finite differences and the
worst result is obtained for analytical metrics. Compact schemes are recom-
mended since they reduce the error by almost one order of magnitude for the
advection case. An additional numerical test for a transitional boundary layer
can be found in [5].
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B Coefficients of the LST Matrix Solver

In the following, the coefficients of the matrix solver for linear stability the-
ory are listed. According to equation (3.96), coefficient matrices exist for the
complex amplitude, its first and second y-derivative and terms containing the
eigenvalue ω, being A0, A1, A2 and B, respectively. The notation here cor-
responds to the one of Mack [63] where the pressure is normalized with the
freestream pressure p∞ instead of ρ∞ · u2

∞.

Note that the pressure distribution is only considered by its values and the wall-
normal derivative of the pressure is neglected. However, using only ∂p/∂y = 0
is a valid assumption for boundary layers.

Coefficients of matrix A0

a011(j) = I ·
`
αU0(j) + γ W0(j)

´
(B.1)

a012(j) = I · αρ0(j) (B.2)

a013(j) =
∂ρ0(j)

∂y
(B.3)

a014(j) = I · γ ρ0(j) (B.4)

a015(j) = 0 (B.5)

a021(j) =
I · α

κMa2ρ0(j)

· p0(j) (B.6)

a022(j) = I · ρ0(j)

`
αU0(j) + γ W0(j)

´
+
µ0(j)

`
4
3
α2 + γ2

´
+ 2

3
µB,0(j) α

2

Re
(B.7)

a023(j) = ρ0(j)

∂U0(j)

∂y
− I ·

`
dµ
dT

´ “ ∂T0(j)
∂y

”
α

Re
(B.8)

a024(j) =
αγ

`
2µB,0(j) + µ0(j)

´
3Re

(B.9)
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a025(j) =
I · α

κMa2T0(j)

· p0(j) −

“
d2µ
dT2

”“
∂T0(j)
∂y

”“
∂U0(j)
∂y

”
Re

−

`
dµ
dT

´„ ∂2U0(j)
∂y2

«
Re

(B.10)

a031(j) = −

“
∂ρ0(j)
∂y

”
κMa2

`
ρ0(j)

´2 · p0(j) (B.11)

a032(j) =
2

3
·
I · α

“
∂T0(j)
∂y

”“
dµ
dT
− dµB

dT

”
Re

(B.12)

a033(j) = I · ρ0(j)

`
αU0(j) + γ W0(j)

´
+
µ0(j)

`
α2 + γ2

´
Re

(B.13)

a034(j) =
2

3
·
I · γ

“
∂T0(j)
∂y

”“
dµ
dT
− dµB

dT

”
Re

(B.14)

a035(j) = −
∂T0(j)
∂y

κMa2
`
T0(j)

´2 · p0(j)

−
I ·
`
dµ
dT

´ “
α
∂U0(j)
∂y

+ γ
∂W0(j)
∂y

”
Re

(B.15)

a041(j) =
I · γ

κMa2ρ0(j)

· p0(j) (B.16)

a042(j) =
αγ

`
2µB,0(j) + µ0(j)

´
3Re

(B.17)

a043(j) = ρ0(j)

∂W0(j)

∂y
− I ·

`
dµ
dT

´ “ ∂T0(j)
∂y

”
γ

Re
(B.18)

a044(j) = I · ρ0(j)

`
αU0(j) + γ W0(j)

´
+
µ0(j)

`
4
3
γ2 + α2

´
+ 2

3
µB,0(j) γ

2

Re
(B.19)
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a045(j) =
I · γ

κMa2T0(j)

· p0(j)

−

“
d2µ
dT2

”“
∂T0(j)
∂y

”“
∂W0(j)
∂y

”
Re

−

`
dµ
dT

´„ ∂2W0(j)
∂y2

«
Re

(B.20)

a051(j) = 0 (B.21)

a052(j) = I · αp0(j) (κ− 1) (B.22)

a053(j) = ρ0(j)

∂T0(j)

∂y
− I ·

2κ (κ− 1) Ma2µα
“
∂U0(j)
∂y

”
Re

−I ·
2κ (κ− 1) Ma2µγ

“
∂W0(j)
∂y

”
Re

(B.23)

a054(j) = I · γ p0(j) (κ− 1) (B.24)

a055(j) = +I · ρ0(j)

`
αU0(j) + γ W0(j)

´
−
κ (κ− 1) Ma2

`
dµ
dT

´„“ ∂U0(j)
∂y

”2

+
“
∂W0(j)
∂y

”2
«

Re

+
κϑ

`
α2 + γ2

´
− κ

“
d2ϑ
dT2

”“
∂T0(j)
∂y

”2

− κ
`
dϑ
dT

´ ∂2T0(j)
∂y2

Re Pr
(B.25)

Coefficients of matrix A1

a111(j) = 0 (B.26)

a112(j) = 0 (B.27)

a113(j) = ρ0(j) (B.28)

a114(j) = 0 (B.29)

a115(j) = 0 (B.30)

a121(j) = 0 (B.31)

a122(j) = −

`
dµ
dT

´ “ ∂T0(j)
∂y

”
Re

(B.32)



170 B Coefficients of the LST Matrix Solver

a123(j) = −
I · α

`
2µB,0(j) + µ(j)

´
3 Re

(B.33)

a124(j) = 0 (B.34)

a125(j) = −

`
dµ
dT

´ “ ∂U0(j)
∂y

”
Re

(B.35)

a131(j) =
1

κMa2ρ0(j)

· p0(j) (B.36)

a132(j) = −1

3

I · α
`
2µB,0(j) + µ(j)

´
Re

(B.37)

a133(j) = −2

3

“
∂T0(j)
∂y

”“
2 dµ
dT

+ dµB
dT

”
Re

(B.38)

a134(j) = −1

3

I · γ
`
2µB,0(j) + µ(j)

´
Re

(B.39)

a135(j) =
1

κMa2T0(j)(y)
· p0(j) (B.40)

a141(j) = 0 (B.41)

a142(j) = 0 (B.42)

a143(j) = −
I · γ

`
2µB,0(j) + µ0(j)

´
3 Re

(B.43)

a144(j) = −

`
dµ
dT

´ “ ∂T0(j)
∂y

”
Re

(B.44)

a145(j) = −

`
dµ
dT

´ “ ∂W0(j)
∂y

”
Re

(B.45)

a151(j) = 0 (B.46)

a152(j) = −2
κ (κ− 1) Ma2µ0(j)

“
∂U0(j)
∂y

”
Re

(B.47)

a153(j) = p0(j) (κ− 1) (B.48)

a154(j) = −2
κ (κ− 1) Ma2µ0(j)

“
∂W0(j)
∂y

”
Re

(B.49)

a155(j) = −2
κ
`
dϑ
dT

´ “ ∂T0(j)
∂y

”
Re Pr

(B.50)
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Coefficients of matrix A2

a211(j) = 0 (B.51)

a222(j) = −
µ0(j)

Re
(B.52)

a233(j) = −
2
`
µB,0(j) + 2 · µ0(j)

´
3 · Re

(B.53)

a244(j) = −
µ0(j)

Re
(B.54)

a255(j) = −
κϑ0(j)

Re Pr
(B.55)

Coefficients of matrix B

b11(j) = I (B.56)

b22(j) = I · ρ0(j) (B.57)

b33(j) = I · ρ0(j) (B.58)

b44(j) = I · ρ0(j) (B.59)

b55(j) = I · ρ0(j) (B.60)
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C Computational Aspects

Besides applicability and accuracy, computational performance is a vital aspect
for the DNS code. With the computational resources being limited, this factor
determines which problems can be computed in reasonable time at all. The
most important criterion for a user is the computational time in which a com-
putation is performed. Since this depends on the size of the problem a specific
CPU time is appropriate, being the computational time over the number of
grid points and timesteps. Of course, performance data depends on the respec-
tive computer. Therefore, the number of floating-point operations per second
can be compared with the theoretical peak performance to see how efficiently
the hardware is used. When it comes to large simulations, multiple processors
must be used to obtain the results in acceptable time. In this context scaling
of the code is of interest, meaning how the computational speed increases with
a growing number of processors.

C.1 Computational Performance

Performance on SX8 Vector Computer

The performance data is based on cases 6B and 6C of chapter 6, covering
spanwise symmetric and non-symmetric computations, respectively. Both sim-
ulations were performed on 16 nodes of the NEC-SX8 vector machine of HLRS
[12]. On each node, one MPI process was executed with eight tasks as shared-
memory parallelization, respectively. This results in a total number of 128
processors. The performance data is summarized in table C.1.

Since the same number of spanwise modes are used, the non-symmetric simula-
tion is larger than the symmetric case by a factor of roughly two. This is found
for real time, CPU-time and the allocated memory. The vector operation ratio
is 99.5% for both cases which is reflected in an efficient usage of the vector
computer: on each CPU, 35% to 38% of the theoretical peak performance are
reached. The specific CPU-times per grid point and complete Runge-Kutta
time step are 1.7µs and 1.5µs for cases B and C, respectively. Compared to
other codes, this is faster by a factor of 2.8 than the LES-code LESSOC [35]
and 1.6 times slower than the incompressible code N3D of IAG [66]. Thereby
one should keep in mind that more equations of higher complexity (e.g. com-
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pressibility, non-linear viscous terms, grid transformation) are solved by this
DNS-code than by the incompressible one. Furthermore, the incompressible
code has been optimized for the current hardware, e.g. by using machine-
dependent FFT routines.

Profiling reveals which subroutines are computationally most expensive. Most
of the CPU-time (some 40%) is spent in the Fourier transformation, followed
by the evaluation of the Navier-Stokes equation with 17%. Spatial derivatives
in ξ- and η-direction require 10% and 16% of the CPU-time, respectively. The
actual Runge-Kutta time integration is only a minor part with 1.7% CPU time.

case 6B 6C

number of CPUs 128 128
real time [h] 57.7 101.0
CPU-time [h] 7220.0 12830.0
memory [GB] 162.0 307
GFLOP/s per CPU 5.6 6.1
GFLOP/s (total) 707.0 783.0
spec. CPU-time [µs] 1.7 1.5

Table C.1: Performance of the DNS-code NS3D on the NEC-SX8 vector com-
puter, for cases 6B (spanwise symmetric) and 6C (non-symmetric).

Performance on SX9 Vector Computer

Computational performance on the latest vector computer at HLRS, the NEC-
SX9, is given for simulation 7B. The simulation was run on 4 nodes, resulting
in a total number of 64 processors. With 16 domains, each MPI process used
4 tasks as shared-memory parallelization. The same vector operation ratio
(99.5%) as on the SX8 vector computer is observed. The number of floating-
point operations per CPU is 14.467 GFLOP/s which is larger by a factor of 2.58
compared to the predecessor machine. The specific CPU-time is decreased by
the same factor to 0.669 µs per grid point and time step. This yields an overall
computational performance of almost one teraflop. Since memory bandwidth
is important for the computational speed, a factor of four is expected to be the
maximum increase. Hence, there may be room for future optimizations. A list
of computational parameters is provided by table C.2.
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case 7B

number of CPUs 64
real time [h] 84.6
CPU-time [h] 5265.3
memory [GB] 264.8
GFLOP/s per CPU 14.47
GFLOP/s (total) 911.9
spec. CPU-time [µs] 0.669

Table C.2: Performance on the NEC-SX9 vector computer, for the turbulent
mixing layer (case 7B).

Performance on Scalar Machines

For comparison, the computational speed has been tested on scalar machines
as well. This was done on one to four processors of a 2.6GHz Opteron and a
2.3GHz Intel Xeon cluster. For a simple two-dimensional test case, the specific
CPU-times are in the range of 13 to 14.8 µs for the Opteron cluster and 10.6
to 15.5 µs for the Intel machine. This is slower by a factor of almost 10 than
the SX8 vector machine and may become even worse for three-dimensional
simulations. Yet this is not bad compared to other codes, see e.g. Denev et al.
[26] and thus running NS3D on scalar machines remains an option.

C.2 Scaling

The performance data of a single simulation allows some theoretical estimation
of the scaling [7]. This is done exemplary for the symmetric simulation of case
6B, here. The spatial discretization by compact finite differences is made of
21 derivatives in ξ- and 25 derivatives in η-direction. According to equation
(3.62) and the setup of the domains (eight subdomains in streamwise and two
in normal direction), the speedup of the pipelined Thomas algorithm is SU = 6
for ξ- and SU = 1.92 for η-derivatives. This means that the efficiencies of the
corresponding parts are 75% and 96%, respectively. Taking into account that
all other computations are local for each domain, the theoretical efficiency of
the MPI parallelization is 96%. This estimation does not consider communica-
tion times. Nevertheless, profiling shows that the time spent for data transfer
is negligible.

Having a fast Fourier transformation, the number of grid points in z-direction
is (2n + 1) for symmetric simulations. For 42 spanwise modes, the resolution
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in physical space is 65 points (n=6). Distributing the spanwise grid points
among eight processors of the shared-memory parallelization yields an uneven
load balancing: seven processors pass a loop along z eight times and one pro-
cessor nine times. Hence, the efficiency of the shared-memory parallelization
decreases to 90%. This estimation corresponds to profiling results showing that
some 10% of the CPU-time is spent in barriers, framing a Microtasking loop
(e.g. subroutine ex_lpminit, ex_lpmterm). Combining the losses of both types
of parallelization, an overall parallel efficiency of 86% can be expected for 128
processors.

Real scaling of shared-memory and MPI parallelization are tested on the SX8
vector computer by one domain with 1 to 8 tasks and 1 to 16 domains with eight
tasks each. The respective efficiencies of shared-memory and MPI paralleliza-
tion are shown in figures C.1 a) and b), respectively. In case of one domain,
the efficiency of the shared-memory parallelization decreases to 76% for eight
processors. This differs distinctly from the theoretical prediction. Profiling
reveals an increase of bank conflicts, meaning that multiple processes try to
access one memory bank. Thus, there are still parts of the code which can be
optimized. With 94%, the efficiency of the MPI parallelization closely matches
the theoretical prediction. For both efficiencies, it does not matter whether
they are based on the required time or the number of floating-point operations
per second. This indicates that there are no relevant additional computations
due to parallelization.

a)

ntask

e ta
sk

2 4 6 8
0.7

0.8

0.9

1

time
GFLOP/s

b)

nMPI

e M
P

I

2 4 6 8 10 12 14 16
0.7

0.8

0.9

1

time
GFLOP/s

Figure C.1: Efficiency of the particular parallelization for case 6B, considered
in terms of time and floating-point operations per second:
a) shared-memory, b) MPI
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The overall speedup and efficiency are given in figure C.2. Within the first
eight processors, the growth of the speedup is lowered which is reflected in the
decreasing efficiency. When it comes to multiple MPI processes, the speedup
grows almost linearly reaching a value of SU = 92 for 128 processes and the
overall efficiency decreases only slightly for more than eight processors. Hence,
it would be more fovorable to use 32 domains with 4 tasks each, here.
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Figure C.2: Speedup and overall efficiency of the NS3D code in the range of 1
to 128 processors for simulation 6B.

C.3 Different Domain Sizes

It is also possible to have subdomains of different sizes as long as the interface
between two subdomains contains the same number of grid points. This is the
case for the thick splitter plate where the y-resolution of the subdomains be-
hind the trailing edge is determined by the thickness of the splitter plate. For
the configuration of chapter 5, the number of grid points is 35 and 425 behind
the splitter plate and above/below, respectively. Hence, the load balancing is
supoptimal, e.g. the computational performance on one processor of the SX-8
is 8.6 GFLOP/s in the large and only 0.7 GFLOP/s in the small subdomains.
In case of three-dimensional simulations, the disproportionate distribution may
be reduced by using less tasks for the small domain. Yet optimal load balanc-
ing is provided for an equal distribution of grid points. Thus, same array sizes
should be used for all subdomains when possible.

Since fixed array sizes are used in the main part of the code, different ex-
ecutables are required for the two resolutions of the respective subdomains.
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The parallel execution is achieved by a configuration file mpirun.conf for the
mpirun command given exemplarily in figure C.3. With this configuration, the
five processes of first executable ns3d_grid_1.out run on the first node and
three of it on the second. The second executable ns3d_grid_2.out runs only
on the second node with three MPI processes. This setup is started by the
command mpirun -f mpirun.conf.

-h 0 -p 5 -e ./ns3d_grid_1.out

-h 1 -p 3 -e ./ns3d_grid_1.out

-h 1 -p 3 -e ./ns3d_grid_2.out

Figure C.3: Configuration file for the mpirun command to run eight processes
of the first executable and three of the second executable on two
different nodes.



D Coupling with Acoustic Solver

D.1 Numerical Example

The example which is chosen to test the coupling of DNS code and acoustic
solver is a uniform mean flow in streamwise direction with Ma∞ = 0.5 on a
rectangular domain. The flow field is initialized with a constant temperature
T̃∞ = 280K, except in the center of the domain. There, a disturbance of
0.001 · T∞ is located. This leads to a circular pressure pulse being emitted in
all directions and a temperature spot which is convected with the streamwise
mean flow. The initial temperature fluctuation is located at x = 39.07, y = 0
with its spatial extend being sketched in figure D.1. The Reynolds number is
Re = 500 with the reference length L being the radius of the initial temperature
disturbance.
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Figure D.1: Initial temperature distribution at several y-positions.

The DNS grid has a range of −15 ≤ y ≤ 15 and 0 ≤ x ≤ 115 in normal and
streamwise direction, respectively. A uniform stepsize of ∆y = 0.15 is used in
y-direction. In streamwise direction, the mesh is equidistant with ∆x = 0.196
up to x = 60. Further downstream the stepsize is continuously stretched up
to ∆x = 2.69 at the outflow. The coarsening of the mesh is done accordingly
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to equation (3.106) providing a damping zone for the subsonic outflow. At the
left boundary of the domain, a subsonic inflow is used.

The DG code solves the linearized Euler equations above and below the inte-
gration domain of the DNS code. The unstructured grid ranges to y = ±25.
The wave propagation is evaluated by comparing different discretization orders
on different meshes, shown in figure D.2. The spanwise extent of DNS and
acoustic domains is chosen with respect to favourable grid properties of the
acoustic solver, being 0 ≤ z ≤ 0.5 and 0 ≤ z ≤ 1.0 for the fine and the coarse
DG mesh, respectively.
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Figure D.2: Two-dimensional view of the Cartesian DNS- (bottom) and the
tetrahedral DG-grid (top) at the upper coupling plane:
a) fine DG mesh, b) coarse DG mesh.

The functionality of the coupling is investigated by computing five configura-
tions, listed in table D.1. The first two cases (A and B) are based on the fine
unstructured grid with a discretization order of up to three. Case C and D are
computed on the coarse grid with O4 and O5, respectively. A computation
performed only by the DNS code is provided by case E. With a larger domain
(−45 ≤ y ≤ 45), the emitted acoustic wave does not reach the free-stream
boundary condition within the simulated time. As we can exclude errors due
to boundary conditions, case E may serve as a reference solution.
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case DNS grid (x y z) DG elements ODG
A 401 x 201 x 5 368800 2
B 401 x 201 x 5 368800 3
C 401 x 201 x 5 92400 4
D 401 x 201 x 5 92400 5
E 401 x 603 x 5 - -

Table D.1: Resolution given by number of grid points/elements and discretiza-
tion order of the DG code (in space and time) for the computed test
cases.

Figure D.3 shows the pressure field of the reference solution at time t = 9.4247.
The fluctuation in the initial condition generates an omnidirectional circular
acoustic pulse. At this time level, the pressure deflection is approximately
p′ = 10−4 and parts of the acoustic wave have already crossed the location of
the coupling plane.

Figure D.3: Instantaneous pressure field at time t = 9.4247, obtained by DNS
without coupling (case E). The location of the coupling plane for
cases A-D is indicated by dashed lines.

The acoustic wave crossing the coupling interface is shown for case C in figure
D.4 a). There, the polynomial ansatz of the DG elements is used to visualize the
complete solution. In D.4 b), the grid configuration is illustrated, showing only
the integral mean values of the DG elements. Despite using different equations
on different grids, almost no refelection can be observed at the coupling plane.
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a)

x

y

50 55 60 65

10

15

20

25

b)

x

y

50 55 60 65

10

15

20

25

Figure D.4: Acoustic wave crossing the coupling plane at t = 9.4247 for 4th-
order DG scheme: a) visualization based on the polynomial ansatz
of the DG elements, b) grid with integral values of the DG cells.
Contour levels correspond to those of figure D.3.

The pressure distribution is compared quantitatively at the streamwise position
x = 52.03, where the acoustic wave crosses the coupling plane at t ≈ 7.85. This
is shown in figure D.5 a) along the complete y-range. The detailed view in figure
D.5 b) reveals that the amplitude is slightly underpredicted by the DG scheme.
This error may correspond to small reflections at the interface. The solution
at a later time level t = 9.4247 is given in figures D.6 a) and b) for the overall
domain and the position of the amplitude maxima, respectively. While the 2nd-
order DG scheme shows a slightly smaller amplitude, no noticeable deviation
is visible for O3 and O4.
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Figure D.5: a) Pressure distribution along the y-axis at x = 52.03, t = 7.8539.
b) Detailed view of the pressure distribution comparing different
discretization orders of the DG scheme with the reference solution.
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Figure D.6: a) Pressure distribution along the y-axis at x = 52.03, t = 9.4247.
b) Detailed view of the pressure distribution comparing different
discretization orders of the DG scheme with the reference solution.
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D.2 Computational Performance

The basic idea of coupling two codes is to decrease the computational effort
in the acoustic farfield where it is sufficient to solve linearized Euler equations
instead of the full Navier-Stokes equations. Thus, computational performance
needs to be considered as well. With the DNS code being fully vectorized,
it was run on the NEC-SX8 installed at HLRS. The DG code is executed on
an Itanium II computer with 1.5 GHz clock rate. Since the scalar machine
is the frontend machine of the vector computer, good network connectivity is
provided. The performance data for this hardware is listed in table D.2.

case A B C D E

real time [s] 24079 60503 73869 195121 782
CPU time (DG) [s] 23560 59230 72869 193827 -
CPU time (DNS) [s] 576 571 507 503 2031
# CPU’s DG 1 1 1 1 -
# CPU’s DNS 1 1 1 1 3
∆t 0.00393 0.00393 0.00393 0.00196 0.01571
timesteps 800 800 800 800 800
DNS gridpoints 403005 403005 403005 403005 1209015
DG elements 368800 368800 92400 92400 -
comm. data [MB]/∆t 3.99 3.99 4.82 4.82 -

Table D.2: Computational performance of the computed cases A to E, mea-
sured on the NEC-SX8 and 1.5 GHz Itanium II computer for the
DNS and the DG code, respectively.

For the current configuration, the time step ∆t is limited by the DG scheme,
being four and eight times smaller than the DNS limit for cases A-C and D,
respectively. Since the time step of the acoustic domain is allowed larger but
not smaller than the one of the DNS domain, the time step ratio is set to one.
However, the Runge-Kutta method requires values at intermediate time levels.
Thus, the Taylor expansion in time is applied by the DG code despite the com-
mon time step.

The CPU time of the DNS code varies slightly between approximately 500 to
600 seconds. This is due to the fact, that the computation did not use one com-
plete node explicitly. The CPU time of the DG method grows exponentially
with the order of the scheme and ranges from 6.5 to 53 hours for 800 timesteps.
The specific CPU time is 1.5µs to 2.1µs per grid point and time step for the
DNS code. For the DG code, the specific computational time ranges from 20µs
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to 75µs per degree of freedom and time step. The total communication is less
than five megabyte per timestep. Due to the good network connection between
the SX8 and the Itanium II machine, the total communication per timestep
takes less than one second.

With the DG code being 40 to 300 times slower than the DNS, the coupling
mechanism does not yield the expected improvement for aeroacoustic simu-
lations. However, the procedure has been validated with good results. The
more severe timestep limitation for the DG scheme is a minor problem for real-
world computations where the spatial resolution of the DNS is much higher
than in the acoustic farfield. An alternative to the current implementation
might be a two-dimensional discretization of the acoustic domain. This seems
to be justified since the sound generation in a spanwise-periodic DNS domain
is only weakly dependent on z if one is far enough from the acoustic source.
Additionally, this would reduce communication overhead.
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Strömungsumschlag in Überschallgrenzschichten. Dissertation, Insitut
für Aerodynamik und Gasdynamik, Universität Stuttgart, 1995.

[28] W. Engblom and J. Bridges. Numerical prediction of chevron nozzle noise
reduction using wind-mgbk methodology. AIAA Paper, 2004-2979, 2004.
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