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Abstract We present a direct numerical simulation of the interaction of an oscillat-
ing oblique shock wave with a laminar boundary layer at a Mach number M = 4.8.
The shock is strong enough to cause a laminar separation bubble at the wall. The in-
coming shock wave oscillates with a frequency within the unstable frequency range
of the laminar boundary layer according to linear stability theory, such that the re-
ceptivity of the supersonic boundary layer to shock oscillations can be investigated.
It is observed that acoustic pressure fluctuations which travel along the shock wave
reflect in radial direction from the point of impingement on the flat plate leading
to a rather complicated pattern of acoustical disturbances. Nevertheless, boundary-
layer instability waves are generated by interaction with the shock wave oscillations
but they are hidden by the acoustical disturbances. Because they travel slower they
stand out after switching the forcing off. The spectral amplitudes of these distur-
bances compare well with the eigenfunctions of the most unstable mode according
to linear stability theory despite the presence of other modes.

1 Introduction

At present it is not yet clear, whether the separation bubble caused by shock-
wave/boundary-layer interaction behaves as an oscillator that generates disturbances
by itself or as an amplifier [2] that merely amplifies already existing disturbances.
Without initial disturbances the boundary layer would remain laminar. In the case of
shock-wave/boundary-layer interaction a relevant initial disturbance could be pro-
vided by oscillations of the impinging shock wave. However, in the absence of sur-
face roughness it is not clear whether there is a sufficiently strong mechanism to
convert the wave numbers of the incoming disturbances into those of the eigen-
modes of the boundary layer. We therefore performed a numerical simulation of
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an unsteady two-dimensional shock wave boundary interaction, based on the work
described in [3, 4].

2 Numerical Method

The numerical method used is described in the references given above. For the
present research we have implemented and tested two methods to prescribe an un-
steady incoming shock wave at the free-stream boundary of our integration domain:
(i) streamwise oscillation of the penetration point of the shock wave, and (ii) har-
monic shock-strength oscillations via an unsteady Rankine-Hugoniot condition. The
first method is inappropriate because the shock movement occurs only in discrete
steps when the actual shock position passes from one grid point to the next. The
second leads to pressure fluctuations which make the shock angle oscillate (for a
steady penetration point of the boundary). Thus, only the second method leads to a
well-controlled smooth and harmonic oscillation of the impinging shock wave.

3 Results

The reference case for the present investigations is a flat-plate boundary layer at the
supersonic Mach number M = 4.8, a free-stream temperature of T∞ = 55.4K, and
constant wall temperature Tw = 270K which is hit by an oblique shock wave with
an angle of 14o in the mean. The Reynolds number based on free-stream values
and some reference length is Re = 105 and, in the absence of the boundary layer,
the shock would hit the wall at x = 19.29 or Rx =

√
x ·Re = 1389. The imposed

pressure rise of p2/p1 = 6.34 leads to boundary layer separation upstream of the
shock impingement and to laminar re-attachment behind it (see Fig. 1).

Fig. 1: Base flow for the present investigations. Note that the y-axis is stretched. The
actual incident shock angle is 14o w.r.t. the x-direction.
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The extend of the laminar separation bubble and the strength of the reverse flow
can be perceived in a plot of the wall-friction coefficient c f in Fig. 2. Note that the
magnitude of skin friction imposed by the reverse flow is about half as much as that
of the unseparated boundary layer.

Fig. 2: Wall friction factor of the steady base flow.

The shock oscillation is introduced as a harmonic shock-angle variation at the
free-stream boundary via σ(t) = σ0 + Δσ sin(ωt), where σ0 = 14o, Δσ = 0.5o,
and ω = F ·Re = 10. This is then transformed via Rankine-Hugoniot to velocity,
pressure and temperature fluctuations which are prescribed at the 10 first boundary
points downstream of the shock. A non-reflective characteristic boundary condition
is used for the other points. The frequency parameter F = 10−4 was chosen to lie in
the middle of the unstable frequency band according to linear stability theory [3].

Fig. 3 shows the pressure rise imposed by the shock (solid line) and compares
it to two instantaneous pressure signals. The downstream pressure fluctuations are
remarkably large but they have almost no influence on the mean flow as indicated
by the very symmetric deviations of the two instantaneous signals from the steady
signal. Good agreement between steady and time-averaged flow has been found in
according plots.

An illustration of the complete instantaneous disturbance field is provided in
Fig. 4. This is obtained by subtracting the steady flow field from the average. The
fluctuations imposed at the free stream enter the integration domain downstream of
the shock wave. They travel down along the shock and in streamwise direction. At
the wall they are reflected such that a checkerboard pattern is formed in their domain
of influence. At the edge of the separated boundary layer at y≈ 0.3 a weak upstream
travelling disturbance appears. Similarly, downstream of the shock impingement, a
narrow stripe of darker and brighter patches appears as well, also following the edge
of the boundary layer. A closer look reveals that these correspond to a wave train
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Fig. 3: Comparison of the steady wall pressure with two instantaneous wall-pressure
signals half a disturbance cycle apart.

with about half the wave length of the sound waves. If this pattern belongs to a
boundary layer instability mode it should travel slower than the acoustical distur-
bances and turning the forcing off should reveal their presence much clearer after
passage of the faster wave out of the integration domain. This is indeed the case
as can be seen in Fig. 5. A row of alternating maxima and minima appears at the
boundary layer edge at Rx > 1550.

Fig. 4: Snapshot of density disturbances in the presence of shock oscillations im-
posed at the free-stream boundary.

A temporal Fourier analysis of the data, see Fig. 6 a) yields amplitude beatings
in streamwise direction which are caused by the simultaneous presence of several
modes. These are further identified in a spatial Fourier transform (using a Hanning
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Fig. 5: Snapshot of density disturbances 14 cycles after stopping of forcing.

window to render the data periodic) of the fundamental amplitudes of the frequency
spectrum. An example is given in Fig. 6 b). It indicates two maxima at wave numbers
α ≈ 9 and α ≈ 11.5, respectively. Using linear stability theory [1] two correspond-
ing modes are found for these wavenumber-frequency combinations: one at α ≈ 9
and the other α = 11.3. The first one is damped while the second one is unstable
according to linear stability theory.

(a) (b)

Fig. 6: Fourier spectra of density fluctuations at y = 0.1. (a) Streamwise evolution
of the fundamental disturbance amplitudeω and its higher harmonic 2ω , (b) Spatial
spectrum for ω at three different intervals (14 – 15 cycles after end of forcing).

Comparison of the amplitude profiles extracted from the DNS with eigenfunc-
tions of linear stability theory at the constant streamwise station Rx = 1575 which
corresponds to the ω-amplitude maximum in Fig. 6 a) are shown in Fig. 7. They
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confirm that an instability wave has been generated by the incoming shock oscilla-
tions. Deviations occur due to the presence of the other mode.

Fig. 7: Comparison of spectral fluctuation amplitudes (ω = 10, solid lines) at
Rx = 1575 with eigenfunctions of the most unstable eigenmode according to lin-
ear stability theory (lines with symbols). η = y ·Re/Rx.

4 Conclusions

An oscillating shock wave can generate instability waves in the region of shock-
wave/boundary-layer interaction. Thus, a supersonic boundary layer is receptive to
external disturbances even in the absence of surface roughness. Because all distur-
bances are convected out of the domain when the forcing at the free stream ends,
the present separation bubble is clearly identified as an ‘amplifier’ in contrast to an
‘oscillator’ (cf. [2], for definition of these terms).
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