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Pfaffenwaldring 21, 70550 Stuttgart, Tel (0711) 685-63401, Fax 63402, http://www.iag.uni-stuttgart.de

Accuracy Analysis of Finite-Difference
Methods on Non-Uniform Grids

Andreas Babucke, Markus J. Kloker

IB 09-01

With increasing computational power, highly accurate direct numerical
simulations of unsteady shear-flow phenomena in large domains or com-
plex geometries are feasible nowadays. These new possibilities require non-
uniform grids, either for more efficient computing or a specific geometry not
covered by an equidistant mesh. We revisit this issue with a rigorous spectral
analysis which has been approved on equidistant grids. Two transformation
techniques and directly applied biased finite differences are compared theo-
retically and numerically for the one-dimensional linear advection-diffusion
problem, considering explicit and compact finite differences of 2nd and 4th

order. In the numerical experiment with sudden grid coarsening and re-
finement, both biased finite differences and transformation with numerically
computed metric coefficients give similar results. Despite one might expect
analytical metric coefficients to be the best choice, this numerical example re-
veals its poor accuracy compared to the other two implementations. Finally,
the evolution of a Tollmien-Schlichting wave in a compressible boundary-
layer flow has been simulated on a streamwise non-equidistant grid and com-
pared with linear stability theory and a direct numerical simulation on an
equidistant grid.

1 Introduction

The first direct numerical simulations (DNS) of laminar instability or laminar-to-turbulent
transition of boundary-layer flows were based on equidistant cartesian grids computing
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unsteady flows along rather simple geometries like a flat plate, see e.g. [7, 10]. Nowadays
increased computational power allows a wider range of applications for DNS. It is obvious
that complex geometries require a non-uniform mesh, as used in [1, 12, 13] for example.
But also for simple geometries it may be necessary to use non-equidistant grids. For
direct aeroacoustic computations [3, 6], the flow as well as the relevant portions of the
acoustic farfield have to be computed, leading to huge domains. Here, grid stretching
is necessary to use the computational resources efficiently. A second requirement for
aeroacoustic simulations is the construction of sponge regions for the outflow boundary.
They are the crucial part for spatial simulations of transition and aeroacoustic simula-
tions as high-amplitude disturbances have to be prevented reaching the outflow in order
not to spoil the low-amplitude disturbance/acoustic field with reflections. Colonius et
al. [5] use a combination of grid stretching and spatial low-pass filtering to dissipate
downstream propagating disturbances in the sponge zone of the aeroacoustic simula-
tion. Visbal and Gaitonde [15] have shown the practical application of finite differences
on deformed meshes using grid transformation. They found high-order schemes to be
superior to low-order discretization. The effect of skewed meshes on the stability and
accuracy of finite differences (FD) has been studied by You et al. [16]: they found large
numerical dissipation on skewed grids which may negatively affect the stability of the
computation. A special implementation of curved-linear meshes is proposed by Zhong
and Tatieni [17]: the actual stretching is included in the coefficients of the stencil and
grid transformation is used only for the bending of the mesh.

On equidistant grids, dispersion and dissipation properties have been evaluated by the
real and imaginary part of the modified wave number by Lele [11]. The combination of
spatial discretization and time-advancing scheme has been considered by Kloker [10]. As
such an analysis is based on an infinite or periodic domain, it is not directly applicable
to non-uniform grids, especially for compact schemes.

Based on a one-dimensional linear convection-diffusion problem three principal pos-
sibilities for a finite difference (FD) discretization on non-uniform grids are compared.
The first way is to use a biased stencil according to the coordinates of the grid, see
e.g. [14]. The other two implementations are based on a transformation of the phys-
ical non-uniform grid to a computational equidistant grid with either analytically or
numerically computed metric coefficients. Explicit FDs are investigated theoretically in
section 2 considering the modified wave number. Since this analysis is hardly feasible
for compact schemes, numerical examination based on the one-dimensional advection-
diffusion equation is performed in section 3. In section 4 the DNS of the spatial evolution
of a Tollmien-Schlichting wave over an almost instantaneous coarsening of the mesh is
simulated. Finally, the main results are summarized in section 5.
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2 Modified-Wavenumber Analysis

The principles of different implementations of non-uniform grids are investigated by
solving the one-dimensional linear advection-diffusion equation

∂u

∂t
+ c · ∂u

∂x
= d · ∂

2u

∂x2
, c, d ∈ R ∧ ≥ 0 (1)

on a periodic or infinite domain in x-direction with constant diffusion and convection
speed. The evaluation of the spatial discretization is based on a wave with the wavenum-
ber k, allowing an arbitrary phase Θ:

u(x) = <
(
ei(k·x+Θ)

)
= cos(k · x+ Θ) . (2)

For the computation of spatial derivatives on a non-uniform grid, the biased scheme
uses the coordinates of the neighboring grid points to compute the stencil for the cor-
responding finite difference. This has to be done once after the grid has been defined.
If grid transformation is applied, spatial derivatives in physical space are computed by
finite differences on an equidistant computational grid and multiplying them with the
corresponding metric coefficients. For the one-dimensional case, the transformation for
the first and second derivatives simplifies to

∂

∂x
=

1(
∂x
∂ξ

) · ∂
∂ξ

(3)

∂2

∂x2
=

1(
∂x
∂ξ

)2 ·
∂2

∂ξ2
−

∂2x
∂ξ2(
∂x
∂ξ

)3 ·
∂

∂ξ
, (4)

with the metric coefficients ∂x/∂ξ and ∂2x/∂ξ2 defined by the transformation x = x(ξ).
Being derivatives in computational space, the metric coefficients can be computed either
numerically using the same procedure as for the flow variables or analytically if the
transformation x(ξ) is given analytically.

2.1 Finite differences on equidistant grids

The classical analysis of finite differences for solutions of equation (2) on equidistant
grids is based on the modified wavenumber k∗mod, which is the normalized first derivative
and k∗2mod, which is the normalized second derivative, respectively [10, 11]:

k∗mod = −i ·∆x · (∂u/∂x)mod
u

, k∗2mod = −∆x2 · (∂2u/∂x2)mod
u

, (5)
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with i =
√
−1 and k∗mod = kmod∆x. The real part of the modified wavenumber k∗mod

describes the dispersion relation which is shown in figure 1 for various central explicit
and compact finite differences. Higher-order as well as compact schemes provide better
wave representation even for less resolved waves. For non-central schemes, also imagi-
nary parts of k∗mod exist. This corresponds to a phase shift of the computed derivative,
resulting in damping or amplification, depending on the direction of the advection speed.
From the maximum of k∗mod onwards, aliasing occurs since the group velocity is propor-
tional to ∂k∗mod/∂k

∗. For the second derivative, the analysis is based on the modified
wavenumber square k∗2mod, with its real part representing the damping given by the dif-
fusion equation (1). To compute the second derivative, one might either apply the first
derivative twice or evaluate it directly with the coefficients of a second-derivative FD.
A comparison of these methods is illustrated in figure 2 for an explicit and a compact
scheme of 4th and 6th order, respectively. The direct evaluation of the second derivatives
yields much better results: i) a better accordance with the exact solution k∗2 and ii) a
non-vanishing k∗2mod for the least-resolved wave (k∗ = π). The finite value of the second
derivative for the saw-tooth mode provides a markedly more stable and consistent nu-
merical scheme, especially for non-linear computations as high-wavenumber waves are
damped by viscous terms. If non-central finite differences are used, the phase shift of
the second derivative causes an artificial advection, given by the imaginary part of k∗2mod.

2.2 Explicit finite differences on non-uniform grids

To evaluate the properties of finite differences on a non-uniform physical grid, the biased
stencils or the metric coefficients need to be taken into account. Therefore, a specific
grid stretching has to be defined with the analysis being only valid for this type of mesh.
To achieve generally valid results, a generic function x(ξ) is desirable. In contrast to
the uniform grid, an analytical approach providing wavenumber diagrams as in figures
1 and 2 is now only possible for explicit finite differences. Due to the varying resolution,
the quality of the computed derivative differs at the neighboring points. An analytical
expression of the modified wavenumber is no more possible without specifying the mesh
on the whole computational domain. Thus, the properties of compact finite differences
have to be investigated using a numerical experiment, as done in section 3.2.

The probably most generic grid transformation is a continuous increase or decrease of
the grid spacing ∆x in physical space which can be expressed by an exponential function:

x(ξ) = ec·ξ ,
∂x

∂ξ
= c · x , ∂2x

∂ξ2
= c2 · x , (6)

4



2 Modified-Wavenumber Analysis

k*

k*
m

od

0 0.5 1 1.5 2 2.5 3
0

1

2

3 exact
compact O6
compact O4
explicit O4
explicit O2

Figure 1: Modified wavenumber k∗mod
for central explicit and com-
pact schemes up to 6th order.
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Figure 2: Modified wavenumber square
k∗2mod for direct calculation of
the second derivative versus
applying the first derivative
twice (4th and 6th order).

where c determines the strength of the continuous stretching. Multiplation with the step
size in computational space, ∆ξ, gives the non-dimensional parameter c∗ = c ·∆ξ. With
the analytical grid stretching we can define a reference step size in physical space

∆xref =
∂x

∂ξ

∣∣∣∣
an.

·∆ξ = c∗ · x (7)

that is used to obtain the non-dimensional wavenumber k∗ = k ·∆xref . Note that half
the grid spacings of a “centered” stencil are smaller or larger than ∆xref , repsectively.
With the coordinates based on equation (7), we obtain the values of the considered wave
with an arbitrary phase Θ:

uj−2 = ei(
k∗
c∗ ·e

−2·c∗+Θ) , uj−1 = ei(
k∗
c∗ ·e

−c∗+Θ) , uj = ei(
k∗
c∗ +Θ) ,

uj+1 = ei(
k∗
c∗ ·e

c∗+Θ) , uj+2 = ei(
k∗
c∗ ·e

2·c∗+Θ) . (8)

For biased finite differences, the spatial derivatives are computed directly in physical
space

∂u

∂x
w a · uj−2 + b · uj−1 + c · uj + d · uj+1 + e · uj+2 (9)
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2 Modified-Wavenumber Analysis

with the coordinates being included in the coefficients. Their derivation is based on
a Taylor-series expansion at the considered point xj. The coefficients for the first and
second derivatives are listed in tabels 1 and 2.

In case of grid transformation, the grid is considered in terms of metric coefficients
and not by the stencil of the finite difference itself. For the evaluation of metric coef-
ficients and spatial derivatives in computational ξ-space, standard finite differences are
used. The resulting metric terms are provided by equations (10)-(11) and (12)-(13) for
analytical and numerical grid transformation, respectively:

∂x

∂ξ an.
= c · x =

∆xref
∆ξ

(10)

∂2x

∂ξ2
an.

= c2 · x = c∗
∆xref
∆ξ2

(11)

∂x

∂ξ num.
= ∆xref

(
a · e−2c∗ + b · e−c∗ + c + d · ec∗ + e · e2c∗

)
(12)

∂2x

∂ξ2
num.

= ∆xref
(
a · e−2c∗ + b · e−c∗ + c + d · ec∗ + e · e2c∗

)
. (13)

With the derivatives in physical space, the modified wavenumber and its square can
be easily computed from equation (5). For two exemplary grid-stretching factors, the
real and imaginary parts of the modified wavenumber k∗mod and the wave number square
k∗2mod are shown for the first and second derivative, respectively. The chosen values of
c∗ = 1 and c∗ = 0.3 correspond to an increase of the physical step size ∆x by a factor
of e = 2.718 and 1.35, respectively. Thus the resolution of a wave at the outer left and
right grid points of a five-point stencil differs by a factor of 20 for c∗ = 1. Despite one
would not choose such a strong stretching for real applications, it clearly demonstrates
the properties of the three different discretization methods on non-uniform grids.

The real and imaginary parts of the modified wavenumber k∗mod of the first derivative
based on three- and five-point stencils are shown in figures 3 and 4, respectively. The
range of normalized wavenumber 0 ≤ k∗ ≤ π in the plots is somewhat arbitrary. With
the wavenumber k being normalized with ∆xref , the value k∗ = π does not correspond
to least resolved wave as it is known from equidistant grids. Using the locally varying
stepsize ∆x, the resolution may be expressed in terms of points per wavelength λx:

npoints
λx

=
2π

k ·∆x
=

2π

k∗ · ∆x
∆xref

. (14)
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2 Modified-Wavenumber Analysis

The value of k∗ = π being the abscissa’s maximum value in the diagrams 3 and
4 corresponds to a number of points per wavelength of 8.6, 3.2, 1.2 and 0.4 for the
physical stepsizes (xj−1 − xj−2), (xj − xj−1), (xj+1 − xj) and (xj+2 − xj+1), respectively.
For smaller values of c∗, the variation decreases. Independently of c∗,

npoints

λx
for k∗ = π

is larger than two for the first two points and smaller than two for the two right points
of the stencil.

Equation 3 reveals that the first derivatives in physical space based on analytical
and numerical metric coefficients simply differ by the factor of the differently computed
metric terms ∂x/∂ξnum.

∂x/∂ξan..
. Thus the real and imaginary parts of the modified wavenumbers

for analytical and numerical computed metric terms vary only by this factor.

2.2.1 First Derivative based on 3-Point Stencil

As one can see in figure 3 a), the biased finite difference provides the best dispersion
properties for the three-point stencil on the exponentially stretched grid with c∗ = 1.
Compared to analytically and numerically computed metric coefficients, the character-
istic of the biased discretization differs less from the exact solution k∗mod,r,exact = k∗.
The analytical metric coefficients result in higher values for both real and imaginary
parts of the modified wave number than the numerically computed metrics. In case of
analytical metric coefficients, the increase ∂k∗mod,r/∂k

∗ of the modified wavenumber is
slightly too large for well resolved waves. For numerically computed metric coefficients,
good wave propagation properties are achieved up to k∗ ≈ 0.6. Aliasing occurs for both
grid-transformation methods for values k∗ > 1. If a biased FD is used, the imaginary
part k∗mod,i of the modified wave number becomes negative (figure 3 b). Thus, waves
traveling in the direction of grid coarsening are successively damped. For the methods
involving metric terms, these waves are amplified with increasing wave number up to
k∗ ≈ 2.7. Less resolved waves (k∗ > 2.7) are slightly damped.

For the weaker stretching c∗ = 0.3, real and imaginary parts of the modified wave
number are given in figures 3 c) and d), respectively. Now, all three methods provide
similar results for the real part k∗mod,r with the dispersion relation being almost equal to

2nd-order FDs on a uniform mesh (see figure 1). The limiting factor for the accuracy
is the imaginary part k∗mod,i. In case of grid transformation, notable amplification for
waves in the direction of grid coarsening exists. Also for smaller stretching ratios, this
can not be neglected: e.g. a stepsize increase of 10% (c∗ = 0.1) yields a maximum of
k∗mod,i = 0.09.
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Figure 3: Real and imaginary parts of the modified wave number k∗mod for stretching
factors c∗ = 1.0 and c∗ = 0.3 using explicit finite differences based on 3-point
stencils.
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2.2.2 First Derivative based on 5-Point Stencil

For the larger stencils, again the biased FD gives the best results in terms of wave
propagation, as shown in figure 4 a) for c∗ = 1. The difference between analytically and
numerically evaluated metrics is less obvious than for the discretization based on second
order FDs. The absolute values of the real and imaginary parts are slightly larger for
the numerical grid transformation. Now, acceptable wave propagation properties are
possible only up to k∗ ≈ 0.3. This smaller value compared to the three-point stencil is
due to the fact that a stronger grid stretching is included in the stencil with the outer
point xj+2 of the FD. Like for the three-point stencil, poorly resolved waves are damped
for the 4th-order biased discretization as they propagate in the direction of coarsening
since k∗mod,i,biased < 0. This is also the case for grid-transformation methods in the
range of 0.4 < k∗ < 2.7. Waves with smaller wave numbers are only slightly amplified
compared to the least resolved waves exhibiting a distinct amplification.

The case of a weaker stretching (c∗ = 0.3) is shown in figures 4 c) and d). Now, the
5-point stencil provides a better result than the 3-point stencil in contrast to c∗ = 1.
The value c∗ ≈ 0.4 (50% increase of step size) was found to be the limit for the 5-
point stencil to be more accurate than the 3-point stencil. Compared with figure 1
a), the dispersion properties for c∗ = 0.3 are already quite similar to the equidistant
spacing. With k∗mod,i,min = −0.52 for biased FDs and k∗mod,i,min = −0.19 for both grid-
transformation methods, dissipation is still a relevant issue. Thus, damping is only
weakly affected by coarsening of the grid. An acceptably low damping (|k∗mod,i| < 0.1)
for relatively well-resolved waves (k∗ < π/2) is observed for c∗ ≈ 0.1 (step size increase
by 10%).

2.2.3 Order of First Derivatives

The order of a scheme describes how the leading discretization error is reduced with
increased resolution. The relative error of the first derivative can be expressed by the
modified wave number to

ε =

∣∣∣∣∣∣
√(

k∗mod,r
)2

+
(
k∗mod,i

)2 − k∗

k∗

∣∣∣∣∣∣ . (15)

Its dependence from the resolution, expressed by the number of grid points per wave-
length (= 2π/k∗), is shown in figure 5 a) for the 3-point stencil with c∗ = 0.3. Increasing
the resolution by a factor of four reduces the error to one fourth in case of biased FDs
and numerical metric coefficients.

10



2 Modified-Wavenumber Analysis

a)

k*

k*
m

od
,r

0 1 2 3
0

1

2

5-point stencil, c*=1.0
b)

k*

k*
m

od
,i

0 1 2 3
-2

-1

0

1 5-point stencil, c*=1.0

c)

k*

k*
m

od
,r

0 1 2 3
0

1

2

5-point stencil, c*=0.3
d)

k*

k*
m

od
,i

0 1 2 3
-2

-1

0

1 5-point stencil, c*=0.3

Figure 4: Real and imaginary parts of the modified wave number k∗mod for stretching
factors c∗ = 1.0 and c∗ = 0.3 using explicit finite differences based on 5-point
stencils.
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Thus, these methods are of second order as it is the case on equidistant grids. With its
error being limited to ε = 0.015, the method of analytically computed metric coefficients
is of zeroth order.

Figure 5 b) shows the corresponding results for the five-point stencil. Again, the biased
FDs are of the same order (O4) as on uniform grids. In case of numerically computed
metrics, the error decays like for the 3-point FD. Thus, a larger stencil does not increase
the order, rather the magnitude of the error is decreased. The error of analytical metric
terms is bound to ε = 2 · 10−4. Despite the error is reduced, it is still of O0.
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Figure 5: Relative error of the first derivative versus the resolution for stetching factor
c∗ = 0.3): a) 3-point stencil, b) 5-point stencil.

The kink in the error for analytically computed metrics occurs where errors of the real
and imaginary part cancel each other. Hence, considering only the order of a scheme
provides less information compared to the modified wave number analysis. In general,
the order is defined as

O = − ∂ {log(ε)}
∂ {log(pts/λ)}

. (16)

Its dependence from the stretching factor is shown in figure 6 for the 5-point stencil
and k∗ = 0.311 (20pts/λ). For vanishing grid stretching (c∗ → 0), numerical metric
coefficiens result in the fourth order known from the uniform mesh. At c∗ = 0.06, a pole
exists where amplitude and phase errors cancel each other. Then the scheme decreases
to second order.
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Figure 6: Discretization order O of the first derivative’s 5-point stencil as a function of
the stretching factor c∗ (20pts/λ).

It is quite astonishing that the numerical metric coefficient provides a better result.
Obviously, discretization errors of the derivative in computational space and of the met-
ric coefficients cancel each other. A remarkable fact is also that an increased stencil does
not increase the order on the non-uniform grid to more than two. However, the leading
error is only in the imaginary part for numerically computed metrics, resulting in an
exact group velocity of up to second spectral order.

2.2.4 Second Derivative based on 3-Point Stencil

The computation of the second derivative with a second-order biased FD gives the best
accordance with the exact solution k∗2 for the real part of the modified wave number
square, given in figure 7 a) for c∗ = 1. Using numerical metric coefficients gives a similar
result. However, deviation from the exact solution occurs for smaller values of k∗, and
the maximum value of k∗2mod is roughly 20% smaller than for the biased finite difference.
The imaginary part is slightly smaller, thus less artificial convection is generated than is
done by the biased FD. In the case of analytically computed metrics, the characteristics
of k∗2mod differs from the exact solution for the real and imaginary parts already for very
small values of k∗. All three methods cause a positive value of k∗2mod,i (figure 7 b) and
thus an artificial advection in the direction of grid coarsening.

For the weaker stretching c∗ = 0.3, the real parts k∗2mod,r collapse for the three methods
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as shown in figure 7 c). Similar to the stronger stretching, a positive value of k∗2mod,i is
obtained for all methods (figure 7 d). Biased FDs and numerical metric provide almost
the same results, here. The value c∗ = 0.3 is approximately the limit of acceptable
accuracy for appropriately resolved waves (k∗ < π/2) if biased FDs or numerically
computed metric coefficients are used. Analytical metrics are an exception here, since
notable values of k∗2mod,i exist even for low stretching ratios and small values of k∗.
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Figure 7: Real and imaginary parts of the modified wave number square k∗2mod for stretch-
ing factors c∗ = 1.0 and c∗ = 0.3 based on 3-point stencil.
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2.2.5 Second Derivative based on 5-Point Stencil

For the 5-point stencils applied to the stretching factor c∗ = 1, the real parts of the
modified wave number square show a better agreement with the exact solution than the
3-point stencil for all three methods (figure 8 a).
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Figure 8: Real and imaginary parts of the modified wave number square k∗2mod for stretch-
ing factors c∗ = 1.0 and c∗ = 0.3 based on 5-point stencil.

At small values of k∗, the weakest deviation is given for the biased finite difference.
Its value grows up to k∗ = 2.25 and decreases above. For the two methods using grid
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transformation, higher values of k∗2mod,r are reached, remaining almost constant for poorly
resolved waves. The imaginary part, given in figure 8 b), differs for biased FDs and grid
transformation methods. For the latter, k∗2mod,i increases up to k∗ ≈ 2.8, meaning an
artificial convection in the direction of grid coarsening.

If the biased FD is used, first, the imaginary part slightly increases. For higher wave
numbers, k∗2mod,i declines to negative values for k∗ > 2.1 meaning an artificial advection
in the direction of grid refinement. Unlike the first derivative, the 3-point stencil does
not provide better results than the 5-point stencil when grid transformation is applied
to the strong stretching ratio c∗ = 1.

The case of weaker grid coarsening (c∗ = 0.3) is shown in figures 8 c) and 8 d) for the
real and imaginary parts of the modified wavenumber square k∗2mod, respectively. The
real part is almost the same for all three methods. Unlike for the stronger step-size ratio
c∗ = 1, biased FDs provide a positive value of k∗2mod,i similar to the grid-transformation
methods. Thus, all three implementations of non-uniform grids induce an artificial
advection in the direction of grid coarsening, here. Considering well-resolved waves
(k∗ < π/2), acceptable accuracy is achieved up to c∗ ≈ 0.3 as shown by figures 8 c) and
8 d).

2.2.6 Order of Second Derivatives

For the seond derivatives, the relative error is given by

ε =

∣∣∣∣∣∣
√(

k∗2mod,r
)2

+
(
k∗2mod,i

)2 − k∗2

k∗2

∣∣∣∣∣∣ (17)

which is shown in figures 9 a) and b) for the 3- and 5-point stencils, respectively. Plotted
versus the number of grid points per wave length, it allows to determine the order as
done for the first derivative.

For the 3- and 5-point stencils, the biased FDs are of second and fourth order, respec-
tively. The error of numerical metric coefficients slightly reduces reaching its final level
of ε = 2 · 10−2 and ε = 2 · 10−3 for the 3- and 5-point stencils, respectively. Hence, the
increased stencil reduces the overall error by one magnitude. For well resolved problems,
the order of the second derivative computed by numerical metric coefficients is of zeroth
order independently of the involved grid points. With an increasing error, the 3-point
stencil provides inconsistent results. Yet this is not the case for the 5-point FD whose
error behaves similar to one with the numerical metrics.

The order according to equation (16) is shown in figure 10 as a function of the stretch-
ing factor c∗ for k∗ = 0.311. On almost uniform grids (c∗ → 0), the order of all three
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Figure 9: Relative error of the second derivative versus the resolution for stretching factor
c∗ = 0.3): a) 3-point stencil, b) 5-point stencil.

methods is consistently four. For stretching factors c∗ > 0.2 the order of both grid
transformation methods reduces linearly with c∗.

3 One-dimensional Numerical Investigation

3.1 Numerical Scheme

To investigate the effects of grid stretching for compact finite differences, we have to rely
on numerical experiments. Therefore, the one-dimensional linear advection-diffusion
equation (1) is solved in a periodic domain x ∈ [0;xend[ with constant diffusion and
advection speed. The initial condition and the resulting exact solution for this partial
differential equation are given by equations (18) and (19), respectively, where α0 =
2π/xend is the fundamental wavenumber and αk = α/α0 the number of wavelengths in
the domain:

u(t=0) = cos (α · x) (18)

uexact = e−d·α
2·t · cos (α[x− c · t]) . (19)

Time integration is done using the classical 4th-order Runge-Kutta scheme [10]. The
spatial discretization is based on compact finite differences of 4th order. For the first and
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Figure 10: Discretization order O of the second derivative’s 5-point stencil as a function
of the stretching factor c∗ (20pts/λ).

second derivatives, the coefficients of the biased compact scheme are given by Shukla &
Zhong [14]. For equidistant grids, the stencils for first and second derivatives reduce to

u′j−1 + 4u′j + u′j+1 =
3

∆ξ
(uj+1 − uj−1) (20)

u′′j−1 + 10 · u′′j + u′′j+1 =
12

∆ξ2
(uj+1 − 2uj + uj−1) , (21)

respectively. These stencils are the standard 4th-order compact schemes with the con-
stant step size ∆ξ. The term “standard” means that the order is maximal for the stencil
width. In case of grid transformation, the physical non-uniform grid is mapped on an
equidistant computational grid. Spatial derivatives in physical space are then computed
by equations (20) and (21) using the derivatives in computational space and multiplying
them with the corresponding local metric coefficients at point xj, given by equation (3)
and (4). Additionally, explicit finite differences as discussed in section 2.2 are imple-
mented to see the difference between explicit and compact discretization on non-uniform
grids.
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3 One-dimensional Numerical Investigation

3.2 Results

The used grid is stretched in the first half of the domain according to the transformation
given below:

x(ξ) =
1 + s

2
· ξ +

s− 1

2b
· [ln(cosh(b(ξ − ξ1)))− ln(cosh(−bξ1)))] (22)

∂x

∂ξ
=

s− 1

b
· tanh(b(ξ − ξ1)) +

1 + s

2
(23)

∂2x

∂ξ2
=

b(s− 1)

2
− b(s− 1) sinh(b(ξ − ξ1))2

cosh(b(ξ − ξ1))2
. (24)

In order to have an almost sudden coarsening of the grid given by an analytical function,
the metric coefficient ∂x/∂ξ is modelled by a tanh function. The grid stretching is defined
by the ratio s = ∆xmax/∆x0. The mesh starts with the regular stepsize ∆x0, increasing
to the coarse ∆xmax at the position ξ1. The parameter b defines how fast the stepsize is
increased: large values of b compress the tanh profile of ∂x/∂ξ leading to a sharp switch
from fine to coarse spacing. The following refinement of the grid is done accordingly.

For the current investigation a computational grid with 100 points and a regular
spacing of ∆x0 = ∆ξ = 0.03141 has been used. In half the domain, the spacing is
∆x = 4 · ∆x0 with s = 4. The stretched area is located in the middle of the domain
with ξ1 = 1/4ξend (x1 = 0.8) and ξ2 = 3/4ξend (x2 = 7.0) being the begin of coarsening
and refinement, respectively. With b = 100, a rapid transition between the different
stepsizes is achieved. The total length of the domain is 7.8525, resulting in a fundamental
wavenumber α0 = 0.8 of the domain. Figure 11 shows the grid transformation x(ξ) and
the metric coefficients xξ = ∂x/∂ξ and xξξ = ∂2x/∂ξ2 for analytical and numerical
evaluation.

The effect of different grid-stretching mechanisms is investigated by computing (i) a
pure convection case (c = 1, d = 0) and (ii) a pure diffusion problem (c = 0, d = 1). The
initial condition of both cases contains nα = α/α0 = 4 wavelengths inside the domain.
With the non-dimensional wave numbers k∗ = α ·∆x = 0.025 and k∗ = α · s∆x = 0.1,
the wave is well resolved with 250 and 62.5 points per wavelength in the fine and coarse
regions, respectively. Therefore, the change of the grid and not the actual resolution
mainly effects the accuracy of the result here.
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Figure 11: Grid transformation x(ξ) with the corresponding metric coefficients xξ and
xξξ. The black solid line corresponds to the analytical metric coefficients.
The numerically computed metric terms are given by the thin grey line with
the discrete grid points indicated by dots.

The time steps are ∆t = 0.015705 and ∆t = 0.0001353 for the advection and diffusion
problem, respectively. In case of the pure advection, the wave of the initial condition
is resolved with 125 time steps per period. With the high temporal resolution, effects
due to the time-integration scheme can be neglected. For both cases, a total number
of 500 time steps has been computed. The resulting computed time of the convection
case corresponds to one flow-through time of the domain. For the diffusion problem,
the amplitude is halved after the computed time steps. The exact solution is shown in
figure 12 for both cases after the corresponding computed time.
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Figure 12: Exact solutions for the advection problem (solid line with circles) and the
diffusion problem (dashed line with triangles). The time corresponds to one
flow-through time and one half-life period, respectively. The symbols refer to
the grid points.

3.2.1 Advection Case

For the advection case, the quality of the computed first derivative is time dependent. As
the wave travels through the domain, the largest error occurs when the maximum of the
first derivative is located near positions of coarsening or refinement of the grid. Figure 13
shows the temporal evolution of the solution for 2nd-order explicit and 4th-order compact
FDs, both for analytical and numerical metric coefficients. During the temporal interval
of 100 time steps, shown here, the wave travels along a distance of 1.57. The compact
scheme provides an almost accurate solution with no observable differences between the
two methods of grid transformation. The low-order methods show the same phase error
increasing with time.

The difference between the two grid-transformation methods is the strong generation
of wiggles for analytical metrics. They are firstly generated at the coarsening of the
mesh (x = 0.8). Having a negative group velocity, the wiggles move upstream and enter
the domain at the right due to the periodicity of the problem. Between time step 100
and 200, the region of refinement (x = 7.0) is reached. Further on, the wiggles move
into the coarse region and increase furthermore, spoiling the solution.

For the compact 4th-order stencils, figures 14 a) and b) show the different solutions
in the region of grid stretching at time step 400 and 500, respectively. Time step 400
corresponds to u ≈ 0 and thus the maximum of |∂u/∂x| located at the beginning of grid
stretching. At both time steps, the solution of the biased compact FDs and the numerical
metric coefficients is similar. The computation using analytical metric coefficients shows
the worst results resulting in wiggles in the area of fine grid spacing. For the computation
using numerical metric coefficients, wiggles are also present but much smaller.
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Figure 13: Solution of the advection problem at various time steps. The dotted line
corresponds to numerical metric coefficients. The solid and dashed lines re-
fer to analytical metric coefficients based on 2nd-order explicit and 4th-order
compact FDs, respectively.
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Figure 14: Solution of the advection case based on 4th-order compact FDs: a) time step
400 (80% of flow-through time), b) time step 500 (one flow-through time).

In order to evaluate the difference between explicit and compact stencils for this
numerical example, equation (1) has been computed using the explicit five-point stencils
as well. In figures 15 a) and b), the solution is shown for time steps 400 and 500,
respectively. The difference between the biased finite difference, the analytical and
the numerical grid transformation is similar to the computation based on the compact
scheme. The explicit stencils give a larger wiggle mode which is most obvious at time
step 400 for the analytical metric coefficients.

Having a periodic domain, a Fourier analysis in x-direction is applied to evaluate
the dispersion properties of the three grid-stretching implementations. In figures 16 a)
and b), the streamwise spectrum is shown. The exact solution is a single amplitude
of u = 1 at a spanwise wavenumber α/α0 = 4, indicated by the dotted line in the
spectra. At timestep 400, the analytical metric coefficients give an amplitude of 4 ·10−2,
almost constant along the whole spectrum. After one whole flow-through time (time step
500), the high-wavenumber amplitudes decrease to 5 · 10−3. For the lower wavenumbers,
only a minor reduction occurs. The numerically computed metric coefficients lead to a
spectrum approximately one magnitude smaller for both time steps considered here. The
biased scheme provides a smooth decay for high wavenumbers. At low wavenumbers, the
spectra of numerical metric coefficients and biased compact finite differences are almost
identical.
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Figure 15: Result as figure 14 but for 4th-order explicit FDs: a) time step 400 (80% of
flow-through time), b) time step 500 (one flow-through time).

a)

α/α0

u

0 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

analytical metric
numerical metric
biased FDs

b)

α/α0

u

0 10 20 30 40 50
10-5

10-4

10-3

10-2

10-1

100

analytical metric
numerical metric
biased FDs

Figure 16: Streamwise spectrum for the advection case, based on 4th-order compact FDs:
a) time step 400, b) time step 500.
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3.2.2 Diffusion Case

Without convection speed (c = 0), the time dependence of the accuracy of the second
derivative is only due to its decreasing amplitude. Thus, it is sufficient to consider only
one time step. Figure 17 a) compares the solutions for the compact scheme at time step
500, corresponding to one half-life period. Both numerical metric coefficients and biased
FDs give a good approximation. For the analytical metric coefficients, the damping
rate in the vicinity of the coarsening of the grid is too small. In the highly resolved
part of the domain, shown in figure 17 b), the damping rate is slightly too large. If the
explicit five-point stencils are used, no relevant difference to the compact schemes can
be observed.
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Figure 17: a) Comparison of the three grid-stretching mechanisms (4th-order compact
FDs) for the diffusive case at time step 500 (one half-life period), b) detailed
view.

The instantaneous error |u− uexact| of the compact schemes is plotted in figure 18 a).
The biased compact finite differences show the lowest error in the range of 4 · 10−5 with
the main derivation located in the stretched section of the grid. Both analytical and
numerical metric coefficients have a maximum error of 8 · 10−2 and 4 · 10−3, respectively.
The error peaks are at the locations of coarsening and refinement while in the coarse
region, the error is similar to the one of the biased FDs. The streamwise spectrum of
the diffusion case is given in figure 18 b) where the exact solution u = 0.5 at α/α0 = 4
is indicated by a dotted line. The spectra of the biased FDs and the numerical metric
coefficients show a smooth decay for the higher wavenumbers and the amplitudes of
the lower wavenumbers decline to values of 3 · 10−3. The numerically computed metric
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4 Application to Boundary Layer Instability

coefficients show an additional oscillation for the higher wave numbers. For the analytical
metric coefficients, this oscillation is larger by almost one order of magnitude and the
low-wavenumber amplitudes decrease less.
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Figure 18: a) Error of the three different grid stretching mechanisms at half-live level for
the diffusion case.
b) Streamwise spectrum for the diffusive case at time step 500.

4 Application to Boundary Layer Instability

4.1 DNS Code

To test different grid-stretching techniques in a real example, the DNS-code NS3D is
applied here for a two-dimensional case. For a detailed description of the code the user
is referred to [2, 4]. Computation is done in non-dimensional quantities: the velocities
are normalized by the reference velocity U∞ and all other quantities by their inflow
values, marked with the subscript ∞. Length scales are made dimensionless with a
reference length L, specified by the Reynolds number Re = ρ∞U∞L/µ∞, and the time
t with L/U∞, where the overbar denotes dimensional values. Temperature dependence
of viscosity µ is modelled using the Sutherland law and a constant Prandt number is
assumed.

The simulation is carried out in a rectangular domain with x and y being the stream-
wise and normal direction, respectively. The spatial discretization is done by compact

26



4 Application to Boundary Layer Instability

finite differences of 6th order. To avoid aliasing, alternating up- and downwind-biased
finite differences are used for convective terms [10]. Biased finite differences are not
implemented in the code. Thus, only analytical and numerical metric coefficients are
considered here. The first derivatives of viscous terms as well as the second derivatives
are based on standard 6th-order compact finite differences. These stencils are also used
for the computation of the numerical metric coefficients as dealiasing is of course not
required for the geometry. The method of grid-adapted biased FDs is not implemented
in the DNS code. For more general grid transformations like curvilinear grids with
x = x(ξ, eta), y = y(ξ, η), its realization is extremely awkward, especially for compact
FDs. Additionally, dealiasing by alternating up- and downwind biased FDs would not
be possible.

Time integration of the conservative variables is done using the standard 4th-order
Runge-Kutta scheme as it is the case for the one-dimensional analysis. For the case
presented here, the code is run in disturbance formulation. This means that the de-
fined baseflow is considered to be a steady-state solution. At the inflow, all quantities
are prescribed using the baseflow and additional time dependent disturbances. For the
boundary at the bottom of the domain, an isothermal wall with no-slip condition and
extrapolation of the pressure is used. At the freestream, a one-dimensional characteristic
boundary condition according to Giles [8] is applied. To avoid reflections from the out-
flow boundary, a damping zone [9] along the last 40 grid points ramps the disturbances
smoothly to zero.

4.2 Results

In order to compare different grid stretching mechanisms for an actual simulation of
fluid mechanics, the streamwise evolution of a Tollmien-Schlichting wave in a subsonic
boundary layer is computed. The boundary layer is obtained from a similarity solution
with a Mach number Ma = 0.8 and a freestream temperature T∞ = 280K. The wall
temperature is fixed to Twall = 296K. The Reynolds number Re = ρ∞U1δ1/µ∞ = 1000
is based on the displacement thickness δ1 at the inflow boundary, with δ1(x0) = 1. Figure
19 shows the baseflow values at the inflow.

The streamwise coordinate has its origin at the leading edge of the flat plate and
ranges from x0 = 337 to xE = 895 inside the domain. The normal coordinate runs from
y = 0 at the wall up to y = 22.35 at the upper boundary. With the boundary layer
thickness δ99(x0) = 2.95 and δ99(xE) = 4.8 at the inflow and outflow, respectively, the
upper boundary condition does not affect the results. Two grids are used to investigate
the influence of the different grid stretching mechanisms. The uniform grid resolves the
streamwise direction with 330 points with ∆x = 1.6981582, corresponding to 20 points
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per wave length of the TS-wave. The fine solution on this mesh is intended to serve
as a reference solution. The stretched grid uses the same ∆x at the beginning and at
the end of the domain. In between, the spacing is increased by a factor of four. Thus
the TS-wave is resolved only with 5 points per wavelength in the coarse region of the
mesh. With the same extent as for the equidistant reference case, now only 180 points
are needed in x direction. For both grids, the normal direction is discretized with 150
points and an equidistant spacing ∆y = 0.15. The damping zone is applied over the last
40 grid points from x(ξ = 140) ≈ 827 onwards. Thus the stretched part of the grid is
located roughly in the middle of the domain without damping zone.
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Figure 19: Baseflow condition at the inflow x0 = 337.

Based on spatial linear stability theory (LST), a fundamental frequency of ω0 = 0.0688
has been chosen for disturbance generation, being the most amplified disturbace at
the inflow. The flow is excited at the inflow with the eigenfunction of the Tollmien-
Schlichting (TS) wave with the fundamental frequency ω0. In the DNS, the prescribed
amplitudes for each quantity are scaled such that the maximum of û is 0.005. The time
step for all simulations is ∆t = 0.06088, thus resolving one period of the TS wave with
1500 timesteps. In total 40 periods have been computed with the output of the last
period being used for Fourier analysis. The simulated time corresponds to roughly 6.5
flow through times, based on the freestream velocity U∞ = 1.

Figure 20 shows the streamwise development of the maximum amplitude along the
wall-normal direction of u for the fundamental frequency ω0. For the uniformly fine grid,
the amplitude reaches its maximum of û = 0.025 at x ≈ 720. For the stretched grid,
wiggles are generated in the coarse region of the mesh. Compared to the solution on the
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Figure 20: Amplitude development of the
u-velocity component for the
fundamental frequency ω0 =
0.0688.
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Figure 21: Amplitudes of the u-velocity
component for the first two
higher harmonics (black = 2 ·
ω0, grey = 3 · ω0).

uniformfly fine grid, the amplitudes on the stretched grid are reduced by 10 to 20 %.
For the analytical grid transformation, the wiggles in the coarse region are almost twice
as strong compared to numerically computed metric coefficients. The reason for the
reduction of the amplitude is investigated by comparing the amplitudes to a simulation
on a uniformly coarse grid with ∆x = 4 ·∆x0. Since the constantly coarse resolution also
affects the front part of the grid x < 420, the level of the amplitude differs. From the
good agreement between linear stability theory and DNS results given below in figure 22,
we find the growth to be clearly determined by linear mechanisms. Thus the amplitude
obtained from the uniform coarse mesh can be shifted along the logarithmic ordinate to
match the curves at x = 420, as done in figure 20. Apart from the wiggles due to the
non-uniform grid, the mean amplitude corresponds well to the solution on the uniformly
coarse grid. Thus the reduced amplitude is not due to the change in resolution but simply
caused by the coarser mesh itself in the middle of the domain. In figure 21, one can see
that the higher harmonics are damped in the region with coarse spacing. This is due to
the numerical dissipation by the used alternating forward-backward biased differences
required for dealiasing. This strategy is used in x- and y-direction with the FDs providing
appropriate stabilization for nonlinear simulations including super- and hypersonic Mach
numbers. In the case considered here, the number of points per wavelength are 5, 2.5

29



4 Application to Boundary Layer Instability

and 1.75 for the fundamental wave and its first two higher harmonics, respectively. Thus
in the coarse region of the mesh, numerical damping counteracts physical amplification
and nonlinear generation. After refinement of the grid the higherharmonics are increased
again but do not reach the corresponding values of the reference solution.

The amplification rates of the TS wave for the three computed cases are compared
with spatial linear stability theory in figure 22. For the uniformly fine grid, the am-
plification rate of the TS wave corresponds well to the result from LST which slightly
underpredicts −αi further downstream. The detailed view of the amplification rate in
figure 23 reveals a saw-tooth modulation of the amplification rate, especially in the
region of grid stretching (x = 420). In the region with coarse spacing, these oscilla-
tions are first reduced but then grow further downstream (figure 22). At the position
of refinement (x = 760) maximum variations of 0.035 and 0.017 can be observed for
the analytically and numerically computed metric coefficients, respectively. With the
following fine stepsize, only a slightly increased value of αi can be observed, compared
to the reference solution. Especially for the sensitive quantity αi, it can be seen that
wiggles spread upstream (x < 420) due to the negative group velocity invoked by the
decreasing k∗mod.
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Figure 22: Amplification rate −αi of the
TS-wave, based on the wall-
normal maximum.
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in left figure).
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5 Conclusions

According to the one-dimensional advection-diffusion example, the alternating res-
olution generates broadband disturbances which are larger in case of analytical metric
coefficients. From the position of refinement the saw-tooth mode travels upstream where
it is slightly damped by viscosity and dissipation of the numerical scheme. With the
wiggle mode on the coarse mesh having a group velocity in the direction of coarsening,
the same wave travels from x = 420 in positive x-direction. The smaller oscillations
travelling in streamwise direction are probably due to the lower amplitude compared to
the position of refinement. Both oscillations may cancel to some extent (430 < x < 440
in figure 23). As shown by figure 3, the group velocity of the saw-tooth mode on the
fine parts of the grid does not have to point in the same direction as its coarse-mesh
counterpart. Hence we can also see upstream propagating oscillations for x < 420. Since
these are not visible at the refinement of the grid where the amplitude of the TS-wave is
larger, they are more likely generated by the upstream travelling saw-tooth mode than
by the physical instability waves.

5 Conclusions

The effects of non-uniform grids on the accuracy of the discretization are investigated
theoretically and numerically for a linear advection-diffusion problem as well as for the
streamwise development of a Tollmien-Schlichting wave in a flat-plate boundary layer.
The following three methods are considered: biased finite differences with the coordinates
of the non-uniform mesh included directly in the stencil, grid transformation based
on analytical metric coefficients or numerically computed metric terms. Considering a
continuously stretched grid as well as an almost instantaneous alteration of the resolution
covers the most of the variety of stretched grids. We point out that the strong mesh
variations used here are used to illustrate the effects of non-uniform grids.

Despite one might think analytically prescribed metric coefficents are the best choice,
the theoretical analysis shows that this method is of zeroth order on the physical grid
or may even cause inconsistent results. Furthermore its yields wrong phase and group
velocities even for arbitrarily resolved problems. In case of numerical metric terms, dis-
cretization errors of the derivatives in computational space and of the metric coefficients
seem to cancel each other. The scheme is now of second and zeroth order on the non-
uniform grid for first and second derivatives, respectively. It is notable that the order
can not be increased but the magnitude of the error is decreased by a larger stencil.
Biased finite differences show always the same order as on equidistant grids.

The theoretical analysis is not possible for compact finite differences since the complete
grid is included by the left-hand side. Therefore a one-dimensional advection-diffusion
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problem is investigated numerically. For all three methods, a rapidly changing resolution
creates a broad spectrum of artificial disturbances. Numerical metric coefficients show
almost the same behavior as biased finite differences. Using analytical metrics gives the
worst results with their error being one order of magnitude larger than the one for the
numerically computed metric coefficients. The use of compact finite differences reduces
the absolute error by almost one order of magnitude for the advection case.

Finally the discretization based on analytical and numerical grid transformation is
applied to the spatial evolution of a Tollmien-Schlichting wave in a compressible bound-
ary layer. The coarsening results in a smaller growth rate of the Tollmien-Schlichting
wave which is not caused by the variation of the mesh itself but only by the worse reso-
lution. The latter causes a saw-tooth like behaviour of the amplification rate which can
be explained by the theoretical analysis and the one-dimensional numerical example.
Accordingly, numerical metric coefficients yield better results than analytical ones.

With the results obtained here, the approach of Zhong and Tatieni [17] is acknowledged
since they use the favorable properties of the biased finite differences for pure grid
stretching and grid transformation only for the deformation of the mesh.

Implementation and computational costs are a relevant issue for a numerical method
as well. On non-moving grids, metric terms or coefficients of the biased finite differences
are computed only once at the beginning of the simulation. Compared to the number of
time steps for real applications, this part of the initialization is not a relevant compu-
tational effort for all methods. Though, additional multiplications occur for both grid
transformation methods. In what way this may affect the computational costs strongly
depends on the solved equations. It might be observable for incompressible flows; in
case of the compressible Navier-Stokes equations, where all terms are non-linear, no ad-
ditional computational costs could be observed. On the other hand, grid transformation
has two advantages: i) it is by far more efficient to implement a compact discretization
on a deformed mesh with x = x(ξ, η) and y = y(ξ, η), for fully three-dimensional grids
this has to be considered even more severely, and ii) simple de-aliasing can be imple-
mented easily by using alternating up- and downwind-biased finite differences as on a
uniform mesh without additional computational costs.
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