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A COUPLING SCHEME FOR DIRECT NUMERICAL SIMULATIONS WITH AN
ACOUSTIC SOLVER
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Abstract. A code for direct numerical simulations (DNS) has been coupled with an acoustic solver for
aeroacoustic applications. The DNS code is intended to compute the noise generation while the acoustic
far-field is evaluated using the linearized Euler equations. Both codes run on different computers on
which they show their best computational performance. As a test case, we show a pressure pulse
emitting from the DNS domain and being propagated by the acoustic solver.

1. Introduction

Noise reduction is an important issue for a wide range of technical problems but the mechanisms of aeroa-
coustic noise generation are not yet understood properly. Aeroacoustic simulations are a relatively new field in
computational fluid dynamics showing several difficulties. On the one hand, one is interested in a large acoustic
domain while on the other hand, a relatively small flow field with high resolution in space and time is needed
to simulate the noise generation. Due to the small amplitudes of the sound compared to the hydrodynamic
fluctuations, boundary conditions as well as the discretization have to be chosen carefully to avoid that the
numerical scheme itself acts as a relevant acoustic source. Two main approaches exist for these computations:
1.) The flow field is computed without the acoustic field. Then an acoustic analogy, e.g. Lighthill [9] or an
acoustic solver is applied using source terms from the flow field or values from the boundaries.
2.) The computation includes the flow field and a relevant part of the acoustic field, computing the acoustic field
directly with the same computational scheme. The typical assumption for sound propagation is that viscous
terms can be neglected for acoustic wave transport. Therefore it seems reasonable to compute the region of
sound generation with a DNS code and the acoustic far field with the linearized Euler equations. The method
presented here couples the two codes in both directions with data exchange at every common timestep. Due to
that, the acoustic field can still interact with the flow field and no artificial boundary condition at the exchange
plane is needed. As both codes contain different numerical schemes, they show best computational performance
on different types of computers. Therefore the coupling mechanism uses the regular network protocol [13]
instead of intra-machine communication like MPI [11].

2. Numerical Methods

2.1. DNS code

On the DNS side, we use the NS3D code based on the three-dimensional unsteady compressible Navier-Stokes
equations. It uses the conservative formulation solving for the conservative variables Q = [ρ, ρu, ρv, ρw, E]
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containing the density, the three momentum densities and the total energy per volume

E = ρ · cv · T +
ρ

2
· (u2 + v2 + w2

)
. (2.1)

The continuity equation, the three momentum equations and the energy equation can be written in vector
notation

∂Q
∂t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂z

= 0 (2.2)

with the flux vectors F, G and H:

F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p − τxx

ρuv − τxy

ρuw − τxz

u(E + p) + qx − uτxx − vτxy − wτxz

⎤
⎥⎥⎥⎥⎦ (2.3)

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv − τxy

ρv2 + p − τyy

ρvw − τyz

v(E + p) + qy − uτxy − vτyy − wτyz

⎤
⎥⎥⎥⎥⎦ (2.4)

H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw − τxz

ρvw − τyz

ρw2 + p − τzz

w(E + p) + qz − uτxz − vτyz − wτzz

⎤
⎥⎥⎥⎥⎦ (2.5)

containing normal stresses

τxx =
μ

Re

(
4
3

∂u

∂x
− 2

3
∂v

∂y
− 2

3
∂w

∂z

)
(2.6)
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)
(2.7)
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)
, (2.8)

shear stresses

τxy =
μ

Re

(
∂u

∂y
+

∂v

∂x

)
(2.9)

τxz =
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Re

(
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+
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)
(2.10)
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)
(2.11)



ESAIM: PROCEEDINGS 3

and the heat flux

qx = − ϑ

(κ − 1)RePrMa2

∂T

∂x
(2.12)

qy = − ϑ

(κ − 1)RePrMa2

∂T

∂y
(2.13)

qz = − ϑ

(κ − 1)RePrMa2

∂T

∂z
. (2.14)

Closure of the equation system is provided by the ideal gas law:

p =
1

κMa2
· ρT . (2.15)

The specific heats cp and cv are assumed to be constant and therefore their ratio κ = cp/cv = 1.4 is constant
as well. Temperature dependence of viscosity μ is modeled using the Sutherland law:

μ(T ) = μ(T∞) · T 3/2 · 1 + Ts

T + Ts
, (2.16)

where Ts = 110.4K/T∞ and μ(T∞ = 280K) = 1.735 · 10−5kg/(ms). Thermal conductivity ϑ is obtained by
assuming a constant Prandtl number Pr = cpμ/ϑ. The most characteristic parameters describing a compressible
viscous flow are the Mach number Ma and the Reynolds number Re = ρ∞U∞L/μ∞. with L being a reference
length and the overbar denoting dimensional values. Dimensionless quantities are obtained by normalizing time
with L/U∞, velocities with the inflow velocity U∞, p with ρ∞ · U

2

∞, specific heats with L/U
2

∞/T∞ and all
other quantities with their respective inflow values.

Spatial discretization in streamwise x and normal y direction is done by 6th-order compact finite differences.
High wavenumbers which are generated by the non-linear terms in the Navier-Stokes equations are damped
by applying alternating up- and downwind-biased finite differences for the convective terms [7]. The second
derivatives are evaluated directly resolving the viscous terms more precisely [2]. Arbitrary grid transformation
in the x-y plane is provided by mapping the physical x-y grid on an equidistant computational ξ-η grid as
described by Anderson [1]:

x = x(ξ, η) , y = y(ξ, η) . (2.17)
Since the flow is assumed to be periodic in spanwise direction, we apply a spectral ansatz for the z−direction:

f(x, y, z, t) =
K∑

k=−K

F̂k(x, y, t) · ei(kγz) . (2.18)

f denotes any flow variable, F̂k its complex Fourier coefficient, K the number of spanwise modes and i =
√−1.

The fundamental spanwise wavenumber γ is given by the fundamental wavelength λz representing the width
of the integration domain by γ = 2π

λz
. De- aliasing is provided by using only 2/3 of the maximum number of

modes.
Time integration is done using the standard 4th-order Runge-Kutta scheme (see e.g. [7]). The code is

parallelized by domain decomposition in the ξ-η plane using MPI [11] and a shared memory parallelization in
spanwise direction. Good vectorization properties provide a fast and efficient usage of vector computers. More
details on the NS3D code can be found in [3].
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2.2. Acoustic Code

The general approach for our acoustic code is to use explicit high order schemes. For Finite Volume (FV)
schemes, Schwartzkopff et al. [14, 15, 17, 18] adopted and optimized the idea of the ADER schemes by Toro
et al. [20–22] for linear and nonlinear equations on structured grids. The main advantage of the ADER-FV
schemes on structured grids is that the first step in a FV scheme, the reconstruction, becomes rather simple,
as all neighborhoods are known directly. Dumbser et al. [4–6] extended the ADER idea on Discontinuous
Galerkin (DG) methods. The very compact ADER-DG formulation does not need a reconstruction and thus
provides the possibility to achieve arbitrary high order of accuracy in space and time even on unstructured
grids. This is particularly useful for accurate noise propagation in the time domain around complex obstacles
or in complex geometries. Arbitrary high order discretization of curved wall boundaries on unstructured grids
is also introduced using superparametric DG elements.
Both ADER-FV and ADER-DG schemes performed well either as stand-alone method or in the framework of
a heterogeneous domain decomposition approach (Utzmann et al. [23]).
We chose the ADER-DG method as acoustic solver for the coupling with the DNS code because of several
reasons. First of all, it is a good testbed for the coupling procedure, as it combines FV properties (elementwise
solution) with a Finite Element (FE) discretization which contains several degrees of freedom per element.
Hence both aspects can be examined. Second, the unstructured code offers high flexibility and can be used for
a variety of test cases, e.g. also calculations in complex geometries. Finally, it allows an efficient parallelization
for the acoustic domain due to its locality. On the other side, it is clear that the DG method is far more
computationally expensive than e.g. the ADER-FV method for linear systems on structured grids and would
not be the method of choice in a domain which is far away from complex geometries. However, this will be
accepted in this first study.
Our implementation of the ADER-DG scheme is very general concerning the mesh, the equations to solve and
the order of accuracy in space and time. The implemented scheme can solve general linear hyperbolic systems
with variable coefficients and source terms on 2D and 3D unstructured domains and the user may chose any
order of accuracy in space and time he needs. Arbitrary spatial accuracy is possible due to the availability
of sets of hierarchical orthogonal basis functions for any desired polynomial degree. For linear systems, it is
sufficient that the user provides the system Jacobian matrices together with their eigenvalues and left and right
eigenvectors. In our case, the governing equations are the linearized Euler equations (LEE), here in primitive
variables:

U′
t + A

0
U′

x + B
0
U′

y + C
0
U′

z = 0 (2.19)
with U′ denoting the perturbation around the background state U0:

U′ = U− U0 =

⎡
⎢⎢⎢⎢⎣

ρ′

u′

v′

w′

p′

⎤
⎥⎥⎥⎥⎦ , A

0
=

⎡
⎢⎢⎢⎢⎣

u0 ρ0 0 0 0
0 u0 0 0 1

ρ0

0 0 u0 0 0
0 0 0 u0 0
0 γp0 0 0 u0

⎤
⎥⎥⎥⎥⎦ (2.20)

B
0

=

⎡
⎢⎢⎢⎢⎣

v0 0 ρ0 0 0
0 v0 0 0 0
0 0 v0 0 1

ρ0

0 0 0 v0 0
0 0 γp0 0 v0

⎤
⎥⎥⎥⎥⎦ , C

0
=

⎡
⎢⎢⎢⎢⎣

w0 0 0 ρ0 0
0 w0 0 0 0
0 0 w0 0 0
0 0 0 w0

1
ρ0

0 0 0 γp0 w0

⎤
⎥⎥⎥⎥⎦ . (2.21)
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3. Domain Coupling

The aim of the present work was to couple two stand-alone solvers at their common boundary in order to
make a direct aeroacoustic simulation possible. The coupling procedure allows the change of equations, grid
types, numerical methods and timesteps. First of all, the DNS code calculates the noise generated in the flow
by solving the nonlinear Navier-Stokes equations. For the sound propagation, we switch to the linearized Euler
equations in the acoustic domain. Second, we allow the mesh to change at a domain interface. As a Finite
Difference scheme is used in the DNS domain, a fine, structured, node based grid is used in order to resolve
the small scale flow phenomena. In the acoustic domain, much coarser Discontinuous Galerkin elements can
be used in order to calculate the propagation of the sound waves which have a rather large wave length. The
numerical methods used are always explicit time integration methods with a time step that is chosen as large
as possible in each domain. As a consequence, not only the spatial grid size has a jump at an interface, but also
the time step. In the following paragraphs we explain some basic parts of the coupling method.

3.1. Coupling of Different Equations

The coupling of different equations is a demanding issue. The coupling of nonlinear and linear Euler equations
has been discussed by Schwartzkopff et al. [12, 16, 23]. It could be shown, that reflections at the coupling
boundaries can be reduced drastically by prescribing rather the continuity of the state variables at the coupling
boundary than the continuity of the flux. The coupling of the nonlinear Navier-Stokes equations (DNS domain)
with the linearized Euler equations (acoustic domain) follows this principle and allows a discontinuous interface
flux while preserving the continuity of the state.

3.2. Coupling of Different Grids

The coupling of arbitrary FV- and DG- grids (Utzmann [23]) has been extended for FD grids. The DNS
domain ΩFD and the acoustic domain ΩDG are coupled at their common boundary only over data in their
ghostelements. There are several rows of ghostpoints (their number depends on the chosen order of accuracy)
for the FD scheme, for the DG scheme only one row of ghostcells is needed (Fig. 1 and 3). These ghostelements
are then used by the numerical methods to update the inner elements in each domain. In the following, the
basic coupling mechanisms between the two discretizations shall be described. The interpolation procedure is
illustrated for 2D elements while the actual implementation is 3-dimensional.

(1) Interpolation from the FD domain onto the DG ghostcells: As the domains are aligned along
their common boundary, the DG ghostcells lie completely within the FD domain (Fig. 1). In order
to obtain the values for the elements, a 3-dimensional Lagrange interpolation is performed: The state
vector U is interpolated from the regular FD mesh onto the position of each Gauss point iGP in the
element’s volume. Then the Gauss point values UiGP are integrated and projected onto the DG cell’s
degrees of freedom ÛGhostcell:

ÛGhostcell =
nGP∑

iGP=1

nDegFr∑
iDegFr=1

ωiGP · φiGP,iDegFr ·UiGP

MiDegFr,iDegFr
, (3.22)

with the integration weights ωiGP , the mass matrix MiDegFr,iDegFr and the value of the base function
φiGP,iDegFr at the Gauss point position. The interpolation stencils are taken from the FD grid and
their order can be arbitrary. However, odd numbers of interpolation points in each direction provide
more symmetrical stencils and are preferred. Figure 2 depicts a close-up of one of the ghostcells: In this
case, fifth order stencils are used for the interpolation.

(2) Interpolation from the DG domain onto the FD ghostpoints: A unique neighbor element
from the DG domain can be assigned to every ghostpoint of the FD coupling boundary (Fig. 3). As
the DG cell’s degrees of freedom contain the complete polynomial information, there is no need for an



6 ESAIM: PROCEEDINGS

Figure 1. A DG ghostcell connecting with the
FD domain.

Figure 2. Interpolation
onto the element’s Gauss
points.

Figure 3. FD ghostpoints connecting with the DG domain.

interpolation stencil and the value of the state vector UGhostpoint at the position of each FD ghostpoint
can be obtained easily:

UGhostpoint =
nDegFr∑

iDegFr=1

φiDegFr(XFD) · ÛiDegFr, (3.23)

with the degrees of freedom ÛiDegFr in the DG neighborcell and the value φiDegFr(XFD) of the base
function at the position XFD of the ghostpoint. The spatial derivatives of the state vector are obtained
in the same way by using the derivatives of the base functions.
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Figure 4. Data exchange cycle of the two domains.

3.3. Coupling of Different Time Steps

The idea of multi size meshes with different time steps has been examined by Tam et al. [19] for DRP schemes
on particularly designed grids. This basic idea has been extended for FV- and DG-schemes on arbitrary meshes
(Utzmann et al. [23]) and can be also applied for the considered coupling between the Finite Difference DNS
domain and the DG acoustic domain.
The idea is illustrated in Fig. 4:

The acoustic domain’s timestep is constant due to the linear problem. It is considered greater than or equal
to the DNS domain’s timestep. In order to ensure an equidistant temporal output for postprocessing (e.g.
Fourier analysis), the DNS timestep is set constant as well for the simulation. The local CFL number (which
defines the stability limit for convective problems) of the acoustic domain is adjusted such, that the timestep is
a multiple of the neighboring domain. Hence, after the acoustic domain performed one timestep, all domains
have the same time level again. Meanwhile, the other domain has been updated n times with n ≥ 1. If a
Runge-Kutta time integration scheme is chosen for the FD domain, also intermediate timesteps are needed and
the overall number of timesteps for the FD domain will be 2 ·n+1. The question is how to treat the ghostpoints
that need to be provided with an updated value for every small timestep. As it has been shown [23] for FV- and
DG-schemes, the key idea is here to use the Cauchy-Kovalevskaja (CK ) procedure to update the ghostpoints.
The starting point is a Taylor series in time

U(X0, tn + τ) = U(X0, tn) + τ
∂U(X0, tn)

∂t
+

τ2

2
∂U2(X0, tn)

∂2t
+ . . . +

τk

k!
∂Uk(X0, tn)

∂kt
(3.24)

The truncation order matches the chosen order of accuracy, e.g. third order for a O3 method in space and
time. Time derivatives are now replaced by spatial derivatives with the Cauchy-Kovalevskaja procedure [8,23].
Once the derivatives at the point X0 are known, the state at an arbitrary time tn + τ can be calculated easily.
Figure 5 shows a whole cycle between two data exchanges including the updating of the ghostpoints via the
CK procedure.
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1. 2.

3. 4.

Figure 5. Coupling different time steps: 1. Data exchange at the common time level: The
states are interpolated onto the ghostpoints of the FD domain and onto the ghostcells of the
DG domain. For the FD ghostpoints, also the spatial derivatives are interpolated. 2. Time
stepping of the FD domain. This can be understood as either an intermediate Runge-Kutta
time step or a real time step. At the same time, its ghostpoints are lifted to the new time level
by the CK procedure. 3. The FD domain makes another time step. Again, its ghostpoints are
pushed to the new time level, based on the original data. 4. The DG domain performs one
single time step and meets the FD domain at a common time level again. Then, a new data
exchange takes place.

3.4. Network connection

As mentioned in the section above, both codes contain totally different numerics. Therefore they show a
different behavior with respect to vectorization. The DNS code uses Cartesian grids showing a high vectoriza-
tion ratio. This results in high computational performance on vector machines and a relative slow execution
on scalar machines. On the other hand, the DG code is based on unstructured grids, having its best computa-
tional performance on scalar machines. Due to that we decided to implement a machine independent coupling
mechanism which allows to run the codes on two different machines. Here, the DNS code runs on the NEC-SX8
vector machine of the High Performance Computing Center Stuttgart (HLRS) while the DG code is executed
on its scalar front end machine TX7 containing 16 Itanium II processors.

The communication is based on the Transmission Control Protocol [13] consisting of a server and a client.
The server opens a port and waits for the client to connect. To preserve the server being started before the client,
the server must not run inside a queuing system. Therefore the DG code is the server, running interactively
before the DNS code is submitted to the queue of the SX8 vector machine. For the client, one has to specify
IP-address and port of the server. The communication itself is done by simply writing on or reading from the
socket.
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The initial communication defines the array sizes, the DNS code sends the baseflow to the DG code and the
timestep ratio is determined. Then at every common timestep the set of primitive variables (ρ, u, v, w, p) near
the boundary is exchanged. The communication is finished by closing the socket.

A big advantage of using the standard network [13] instead of MPI [11] is the fact, that the there are still
two separate executables and the two codes do not have to be merged. Each code does not have to care about
the internal parallelization concept of the other code, since only the first MPI process communicates with the
other program. The data-distribution with the other internal processes is done by each program separately.

4. Numerical example

The example we have chosen is a uniform mean flow with Ma∞ = 0.5 in streamwise direction, resulting in
an ambient pressure of p∞ = 1/κMa2 = 2.85714. The temperature is T∞ = 280K, containing a temperature
disturbance of 0.001 · T∞ with a radius of 1.0 located at x = 39.0 and y = 0.0 in the DNS domain. This leads
to a circular pressure pulse being emitted in all directions and a temperature spot which is convected with the
streamwise mean flow. The Reynolds number Re = 500 and the Prandtl number Pr = 0.71 which describe the
viscous terms are of course only needed for the DNS domain.

The DNS grid has a range of −15 ≤ y ≤ 15 in normal and 0 ≤ x ≤ 115 in streamwise direction. In order
to prevent disturbances convected with the meanflow reaching the outflow, the grid is stretched in x direction
from x = 60.0 onwards. The spanwise extent has been chosen with respect to favorable grid properties of the
DG code and is z = [0.0, 0.5] for the fine and z = [0.0, 1.0] for the coarse grid, respectively. The DG domains are
located above and below the DNS grid with the same extent in streamwise and spanwise direction and ranging
to y = ±25. The wave propagation is evaluated by comparing discretization orders on different grids which are
illustrated in Fig. 6 and 7.

Figure 6. Detailed 2-d view of
DNS- (bottom) and fine tetrahedral
DG-grid (top)

Figure 7. Detailed 2-d view of
DNS- (bottom) and coarse tetrahe-
dral DG-grid (top)
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The following cases have been computed to evaluate the coupling scheme:

case DNS grid (x y z) DG elements DG order
A 401 x 201 x 5 368800 2
B 401 x 201 x 5 368800 3
C 401 x 201 x 5 92400 4
D 401 x 201 x 5 92400 5
E 401 x 603 x 5 - -

Case E is a larger DNS which has been performed to compare the results. The domain has three times the
size of the original DNS ranging up to y = ±45. This gives enough space so that the wave does not reach the
boundary for the considered time. As we can exclude errors due to boundary conditions, the DNS result may
serve as reference data. The resulting pressure distribution in the x-y plane at time t = 9.42477 is shown in
Fig. 8, illustrating the generated acoustic wave.

Figure 8. Instantaneous pressure field at time t = 9.4247, obtained by DNS without coupling.

The wave crossing the coupling interface is shown for case C in Fig. 9, using the polynomial ansatz of the
elements in order to visualize the complete solution. Figure 10 illustrates the grid configuration visualizing only
the integral mean values for the DG elements. Despite the different equations and discretization used in both
codes, the wave crosses the coupling plane with almost no reflections.

The pressure distribution along a constant x position is shown in Fig. 11 and 13. The detailed views in Fig.
12 and 14 illustrate the differences between various DG orders and the DNS solution. At time t = 7.8539, when
the pulse passes the coupling interface, a small amplitude error can be observed. This error may correspond to
small reflections at the interface. Later in time, the amplitudes are the same for both DNS and DG scheme, as
one can see in Fig. 14. The phase error compared to the DNS solution decreases with the higher order for the
DG grid. It must be taken into account that the Navier-Stokes equations contain viscous terms while in the
outer domain the linear Euler equations are solved. This might explain the better accordance of the amplitudes
at the later timestep (Fig. 14).
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Figure 9. Acoustic wave crossing the coupling plane at time t = 9.4247 for 4th-order DG
scheme on the coarse grid.

Figure 10. DNS and DG grids with integral mean values of the DG elements at time t = 9.4247
for 4th-order DG scheme on the coarse grid.
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Figure 11. Pressure distribution at position x = 52.03 and time t = 7.8539.

Figure 12. Detailed view of pressure distribution at position x = 52.03 and time t = 7.8539.
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Figure 13. Pressure distribution at position x = 52.03 and time t = 9.4247.

Figure 14. Detailed view of pressure distribution at position x = 52.03 and time t = 9.4247.
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4.1. Computational performance

After comparing the results, we want to look at the computational performance. As mentioned above, the
machines used here are a NEC-SX8 for the DNS code and an Itanium II machine for the DG code. The
computational performance for the considered cases is summarized in the following table:

computational case A B C D E
DG order 2 3 4 5 -
real time [s] 24079 60503 73869 195121 782
CPU time ADER-DG [s] 23560 59230 72869 193827 -
CPU time DNS-code [s] 576 571 507 503 2031
# CPU’s ADER-DG 1 1 1 1 -
# CPU’s DNS-code 1 1 1 1 3
Δt 0.003927 0.003927 0.003927 0.001964 0.015708
number of timesteps 800 800 800 800 800
DNS gridpoints 403005 403005 403005 403005 1209015
ADER-DG elements 368800 368800 92400 92400 -
comm. data [MB] 3.99 3.99 4.82 4.82 -

The CPU time of the DNS code varies slightly between approximately 500 to 600 seconds. This is due to the
fact, that the computation did not use one complete node explicitly. The CPU time of the ADER-DG method
grows exponentially with the order of the scheme and ranges from 6.5 to 53 hours for 800 timesteps. The total
communication is less than five megabyte per timestep. Due to the good network connection between the SX8
and the Itanium II machine, the total communication per timestep takes less than one second.

As the timestep for case E is four times larger than in cases A to C and eight times higher than in case D,
the timestep is limited by the DG code for this problem. Therefore the timestep ratio is set to one for the cases
regarded here. However, the Runge-Kutta method requires values at intermediate timelevels. Therefore, the
Cauchy-Kovalevskaja procedure (see section 3.3) is necessary despite the common timestep. More details on
stability limits of DG schemes can be found in [10].

5. Conclusions

We could show, that the developed coupling mechanism is capable of transporting an acoustic wave package
from the interior DNS domain to the outer unstructured grid, where the linearized Euler equations are solved.
Despite the different equations and different discretizations used in both codes, almost no reflection could be
observed at the coupling plane. Nevertheless, the computational performance did not convince as the DG
scheme required 40 to almost 400 times the CPU time of the DNS code. However, regarding the the testbed
character of the simulation, the coupling procedure has been validated with good results. The more severe
timestep limitation for the ADER-DG scheme is a minor problem for ’real world’ computations where the
spatial resolution of the DNS is much higher than in the DG domain where only long wave acoustics need
to be resolved. Furthermore, while the unstructured DG method is highly suitable in the vicinity of complex
geometries, a much cheaper structured code (e.g. linear ADER-FV) could be used for far field computations,
based on the proposed coupling mechanism.
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