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Summary

Sound generation downstream the nozzle end of a subsonic laminar jet has been in-
vestigated using two-dimensional direct numerical simulations (DNS). The nozzle
end is modeled by a finite flat plate with Mach numbers of MaI = 0.8 above and
MaII = 0.2 below the splitter plate. Behind the nozzle end, a combination of a
wake and mixing layer develops. Due to the high amplification rates, disturbances
saturate before a pure mixing layer occurs. Non-linear generation mechanisms pro-
duce higher harmonic disturbances in the upper boundary layer, resulting in an only
quasi periodic solution. The main acoustic sources correspond to the positions of
vortex pairing. Broadband noise is emitted instead of tonal noise, known from the
pure mixing layer without a splitter plate [4].

1 Introduction

Noise reduction is an important issue for a wide range of technical problems but
the mechanisms of flow-induced sound are not yet understood properly. The current
investigation focuses on jet noise as it is a major noise source of aircrafts. Aero-
acoustic simulations are a relatively new field in computational fluid dynamics de-
manding high requirements in computational performance and the accuracy of the
computational scheme itself. On the one hand, a high resolution is needed to com-
pute the noise sources accurately, on the other hand, it demands a large computa-
tional domain to obtain the relevant portions of the acoustic far-field. As the acoustic
amplitudes are small compared to the flow-field disturbances, boundary conditions
have to be chosen carefully, in order not to spoil the acoustic field with reflections.

Previous investigations of jet noise have been focusing on either pure mixing
layers [3, 4] or low Reynolds number jets [5], where a S-shaped velocity profile is
used at the inflow. In this two-dimensional DNS, we include the nozzle end, modeled
by a thin flat plate with two different free-stream velocities on top and below. This
allows to investigate the influence of the wake formed by the two boundary layers.
Additionally, the splitter plate gives the possibility to model real actuators for future
noise reduction instead of unrealistic volume forcing.



2 Computational Configuration

2.1 Numerical Method

The two-dimensional simulation is a first step and has been performed using the
NS3D code [2]. It solves the unsteady compressible Navier-Stokes equations. The
code is written in conservative formulation, solving for density ρ, the momentum
densities ρu, ρv and the total energy per volume E. The velocity components are
normalized by the inflow velocity U∞, the pressure with ρ ·U2

∞ and all other quan-
tities by their inflow values of the upper boundary layer (see figure 1), marked with
the subscript ∞. Length scales are made dimensionless with a reference length L
and the time with L/U∞, where the overbar denotes dimensional quantities. The
viscosity is modeled using the Sutherland law with a reference viscosity µ(T∞ =
280K) = 1.735 · 10−5kg/(ms). Since we can assume a weak temperature depen-
dence, the Prandtl number Pr = 0.71 and the ratio of specific heats κ = 1.4 are
taken constant.

In streamwise (x) and normal (y) direction, the flow-field is discretized by 6th-
order compact finite differences. Alternating up- and downwind-biased differences
[7] are applied to convective terms for de-aliasing. Second derivatives are computed
directly instead of applying the first derivative twice. This leads to better resolved
viscous terms and improves the stability of the code [1]. Grid transformation in the
x-y plane is implemented by mapping the physical grid on an equidistant compu-
tational ξ-η grid. The equations are integrated in time using the standard 4th-order
Runge-Kutta scheme. The domain decomposition in the x-y plane is not only used
for parallelization, it also allows to define neighbours or specific boundary condi-
tions for each domain. Therefore, the nozzle end can be included easily without any
special treatment of corner points.

At the free stream boundaries, a one-dimensional characteristic boundary con-
dition [6] is used. An additional damping zone forces the flow variables smoothly
to a steady state solution. Prescribing amplitude and phase distributions from linear
stability theory allows to introduce defined disturbances at the subsonic inflow with
characteristic boundary conditions [6]. The outflow is the most crucial part as one
has to avoid large structures passing the boundary and contaminating the acoustic
field. Therefore, a combination of grid stretching and spatial low-pass filtering is ap-
plied in the sponge region. Disturbances become increasingly badly resolved as they
propagate through the sponge region. As the spatial filter depends on the step size
in x-direction, perturbations are smoothly dissipated before they reach the outflow
boundary. This procedure shows very low reflections and has been already applied
by Colonius et al. [4].

2.2 Flow parameters

For the current investigation, an isothermal subsonic jet with the Mach numbers
MaI = 0.8 for the upper and MaII = 0.2 for the lower stream has been selected.
As both temperatures are equal (T1 = T2 = 280K), the ratio of the streamwise



velocities is UI/UII = 4. This large factor leads to strong instabilities behind the
nozzle end, so a moderate number of grid points in x-direction is sufficient to sim-
ulate the aeroacoustic source. The Reynolds number Re = ρ∞U1δ1,I/µ∞ = 1000
is based on the displacement thickness δ1,I of the upper stream at the inflow. With
δ1,I(x0) = 1, length scales are normalized with the displacement thickness of the
fast stream at the inflow. The boundary layer of the lower stream corresponds to the
same origin of the flat plate.

The cartesian grid is decomposed into eight subdomains, four in streamwise
and two in normal direction. Each subdomian contains 650 x 425 points in x- and
y-direction. The mesh is uniform in streamwise direction with a step size of ∆x =
0.15 up to the sponge region, where the grid is highly stretched. In normal direction,
the finest step size is ∆y = 0.15 in the middle of the domain with a continuous
stretching up to a spacing of ∆y = 1.06. The origin of the coordinate system (x = 0,
y = 0) is located at the end of the nozzle. The nozzle end is modeled by a finite
thin flat plate with a thickness of one ∆y. Due to the vanishing thickness of the
nozzle end, an isothermal boundary condition at the wall has been chosen. The
temperature of the plate is Twall = 296K, being the mean value of the adiabatic
wall temperatures of the two streams.

The initial condition along the flat plate is obtained from similarity solutions of
the boundary-layer equations. Further downstream, the full boundary-layer equa-
tions are integrated downstream, providing a flow-field sufficient for an initial con-
dition and linear stability theory. The resulting streamwise velocity profiles of the
initial condition are shown in figures 1 and 2. Behind the nozzle end, the flow field
keeps its wake-like shape for a long range. As high amplification rates occur here,
the flow is already unsteady before a pure mixing layer has developed. This means
that the pure mixing layer investigated earlier [1, 3, 4] has to be considered as a
rather theoretical approach.

3 Linear Stability Theory

Spatial linear stability theory (LST) is used both to introduce disturbances at the
inflow, as well as for further analysis of the flow-field. As the flow is highly un-
steady behind the nozzle end and enforcing an artificial steady state does not work
properly, we use the initial condition derived from the boundary-layer equations to
compute eigenvalues and eigenfunctions. The computation is based on a 4th-order
matrix solver combined with Wielandt iteration. According to figure 3, a fundamen-
tal angular frequency of ω = 0.0688 was chosen for the upper boundary layer. The
amplification keeps almost constant in downstream direction. As the two bound-
ary layers emerge from the same position, the lower boundary layer is stable up to
the nozzle end. Behind the edge of the splitter plate, amplification rates 50 times
higher than in the upper boundary layer occur due to the inflection points of the
streamwise-velocity profile. Maximum amplification in the mixing layer takes place
for a frequency of roughly three to four times of the fundamental frequency of the
boundary layer as illustrated in figure 4.



4 Numerical Results

The flow is forced at the inflow of the upper boundary layer with a single disturbance
of the fundamental frequency ω0 and an amplitude of u′max = 5 · 10−3, using the
corresponding eigenfunction from linear stability theory. As the flow field is only
quasi periodic in time, a time interval of 64 fundamental periods with a sampling rate
of 4000 timesteps is used for analysis. To ensure that no initial disturbances falsify
the results, a total number of 556000 timesteps, corresponding to 139 periods of the
fundamental frequency, has been computed. As the maxima of u-disturbances in the
boundary layer are located near the wall, analysis of amplitudes is mainly based on
the maximum of the streamwise velocity along y. Thus only a small data strip in
y-direction with high temporal resolution is required for postprocessing. The spatial
growth rates αi are compared with linear stability theory in figures 5 and 6 for the
upper boundary layer and the following mixing layer, respectively. For the latter,
the normal velocity v is chosen as it is mainly associated with vorticity and does not
contain upstream propagating sound. The maximum amplitudes of the streamwise
velocity u are shown in figure 7 where the fundamental frequency and its first five
higher harmonics are highlighted. Note that along the splitter plate (x ≤ 0), the
values of the upper boundary layer are used.

In the upper boundary layer, the fundamental disturbance (1, 0) behaves accord-
ing to linear stability theory. The amplification rates of the first two higher harmon-
ics (2, 0) and (3, 0) approach the one of the fundamental frequency, indicating that
they are generated by the fundamental disturbance. Near the end of the splitter plate
(−20 < x < 10), the growth rates differ from linear stability results due to the
discontinuity in geometry at x = 0. The amplitudes of the streamwise velocity u
shown in figure 7 reveal the generation of higher harmonics in the upper boundary
layer, leading to a wider disturbance spectrum for the subsequent mixing layer.

Behind the splitter plate, the first three higher harmonics are now strongly am-
plified and grow according to linear stability theory (figure 6). Due to increased
amplitudes of several frequencies, also originally stable modes grow now caused by
non-linear interaction of the amplified disturbances. With many disturbances hav-
ing large amplitudes, only a quasi periodic solution can be reached. Saturation of
the second higher harmonic (3, 0) takes place at x ≈ 60. In figure 8, we can see that
this is the position where the mixing layer rolls up and the first vortex is generated.
Further downstream, the lower frequencies (1, 0) and (2, 0) dominate the flow field,
corresponding to subsequent vortex pairing. At x = 150, two out of three eddies
pair and the resulting vortex merges with the remaining eddy at x = 220. Thereby,
it is only quasi-deterministic whether the single eddy pairs with the precedent or
subsequent bigger vortex.

The resulting emitted sound is visualized by the dilatation field ∇−→u together
with the spanwise vorticity in figure 9. Although the sound generation is less clear
than for a pure mixing layer [4], the dilatation field allows to determine roughly two
acoustic sources. Their positions correspond to the locations of vortex pairing men-
tioned above. By placing an observer in the acoustic field (x = 195, y = −121.8),
the emitted sound can be evaluated more precisely. Looking at the time dependent



pressure signal in figure 10, almost random fluctuations can be observed. The spec-
trum of the acoustic pressure in figure 11 shows a broadband noise with decaying
amplitudes for higher frequencies. Despite the full spectrum, peaks at higher har-
monics of the fundamental frequency (ω/ω0 = 2, 3, 4, 6) can be observed.

5 Conclusion

The nozzle end of an isothermal jet with Mach numbers MaI = 0.8 and MaII = 0.2
has been simulated using two-dimensional DNS. As a model for the nozzle end of
a jet, the mixing of two co-floating streams downstream of a splitter plate is used.
The baseflow obtained from the boundary-layer equations shows a combination of
wake and mixing layer behind the nozzle end. The flow becomes highly unsteady
already before a pure mixing layer develops. As the disturbances saturate, roll up
of the mixing layer and, further downstream, vortex pairing occurs. Due to large
amplitudes, non-linear mechanisms produce a wide spectrum of disturbances, lead-
ing to a less deterministic flow-field as it is the case for the pure mixing layer. This
results in a broadband noise emission, still showing peaks at the higher harmon-
ics in the pressure spectrum. Further investigations will include three-dimensional
simulations and the development of actuators for noise reduction.
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Figure 1 Profile of the streamwise ve-
locity u for the upper and lower boundary
layer at the inflow.
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Figure 2 Downstream evolution of the
streamwise velocity profile behind the noz-
zle end.
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Figure 3 Amplification rates of the up-
per (fast) boundary layer given by linear
stability theory for various x−positions.
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Figure 4 Amplification rates for various
x−positions behind the splitter plate pre-
dicted by linear stability theory.
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Figure 5 Amplification rates of stream-
wise velocity u in the upper bound-
ary layer, based on maximum amplitudes
along y. Symbols denote results from lin-
ear stability theory.
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Figure 6 Amplification rates of normal
velocity v behind the nozzle end, based
on maximum amplitudes along y. Symbols
denote results from linear stability theory.
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Figure 7 Maximum amplitude of the streamwise velocity fluctuation u′ in the upper bound-
ary layer (x < 0) and behind the splitter plate (x ≥ 0). The fundamental frequency and
its five higher harmonics are plotted in bold and labeled separately. The non-integer higher
harmonics are colored in dark and bright blue, dark and bright green, yellow and grey, respec-
tively. Each color corresponds to a frequency range of 1 · ω0. (h, 0) means frequency h · ω0

with zero spanwise wavenumber.

Figure 8 Snapshot of the spanwise vorticity behind the nozzle end (located at x = 0).
Contour levels range from −0.53 to 0.12.



Figure 9 Snapshot of the far-field sound showing the dilatation∇u in a range of±3·10−4.
The two boundary layers and the evolving mixing layer are illustrated by spanwise vorticity
with the same contour levels as in figure 8. The position of the observer is marked by a white
cross.
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Figure 10 Time-dependent signal of the acoustic pressure fluctuations in the far-field at the
observer’s position (x = 195, y = −121.8).
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Figure 11 Amplitude spectrum of the acoustic pressure relative to the fundamental fre-
quency at the observer’s position (x = 195, y = −121.8). Analysis is based on the time
frame shown in figure 10.


